MBHA001 - Update on simulations

E. Ravaioli (CERN) STEATM

Thanks to J. Ludwin, M. Bednarek, F. Mangiarotti, A. Verweij and other colleagues involved (CERN)

Simulations of transient after installing an artificial short

Type of parallel path installed	Peak current through the parallel path [A]	Peak voltage across D1L+D2L [V]	Peak temperature [K]	Fuse rating	We expect to reduce spikes
50Ω Resistor + fuse	1.8 A	90 V	293 K	2 A	Yes, x2
10Ω Resistor + fuse	9 A	90 V	296 K	10 A	Yes, x 5
20 V Zener Diode $+10 \Omega \mathrm{R}+$ fuse	7.5 A	90 V	<296 K	10 A	Yes, x 5
50 V Zener Diode $+10 \Omega \mathrm{R}+$ fuse	4.5 A	90 V	<296 K	5 A	Yes, x5
50 V Zener Diode $+25 \Omega \mathrm{R}+$ fuse	2 A	90 V	<295 K	2 A	Yes, $\times 2$

If the spikes are caused by an intermittent short, we should observe a reduction of the spike amplitude after installing the parallel branch, provided enough current flows through it [to completely suppress the spikes, tens of A needed...]

Proposal (please offer comments!)

- $R=10 \Omega+50$ V Zener Diode: Peak current <5 A and peak temperature < 300 K
- Fuse in series, rated to 5 A [is this adequate?]
- We could expect a reduction of a factor ~ 5 in the spike amplitude
- Note: For tests at l>9 kA, the peak current and temperature would increase!

See next slide about voltage

in case of fuse blowing-up

Simulation of a 9 kA transient with Zener Diode $+10 \Omega$ resistor

Fuse does not blow up

Fuse blows up at $\mathrm{t}=150 \mathrm{~ms}$ (blow-up time: $10 \mu \mathrm{~s}$)

- Voltage across the presumed short pikes up to 1.4 kV
- Current through presumed short spikes up to 1.5 A
- Spike lasts $\sim 50 \mu \mathrm{~s}$

Fuse blows up

Maximum current allowed through the voltage tap

Assumptions

- AWG26, cross-section $0.129 \mathrm{~mm}^{2}$
- $C u, R R R=100, B=0$
- Initial temperature $=293 \mathrm{~K}$
- Applied voltage identical to the voltage measured during transient at 9 kA
- Zener Diode not present

Results

- Peak current and temperature calculated as a function of the selected resistance of the artificial short circuit
- To maintain peak current $<2 A, R>50 \Omega$ needed
- For R=10 Ω : peak current <10 A and peak temperature <300 K
- Note: For tests at l>9 kA, the peak current and temperature would increase!

Observed spike occurrence and new proposed tests

MBHA-001		Initial current [kA]				
		6	7.8	9	10.5	11.85
	+90	no spikes				
	-20	no spikes		spikes		
	-60		spikes			
	-90	A		spikes		
	-120				ne spike	one spike
Missing a test at 6 kA and higher voltage with negative polarity Will we observe spikes? $\rightarrow 6 \mathrm{kA}, \mathrm{D} 1 \mathrm{~L}-\mathrm{QH}$ delayed by 50 ms [note the different QH] U"short" ${ }^{\sim}$ 92 V, T_hot $\sim 133 \mathrm{~K}$						

Missing a test at high current and low voltage
Will we observe spikes, or just one spike?
$\rightarrow 11.85 \mathrm{kA}, \mathrm{D} 1 \mathrm{U}-\mathrm{QH}$ delayed by 5 ms
U"short" ${ }^{\sim} 20 \mathrm{~V}, \mathrm{~T}$ _hot $\sim 311 \mathrm{~K}$

Missing a test at 9 kA and higher voltage
Will we observe spikes, or just one spike?
$\rightarrow 9$ kA, D1L-QH delayed by 10 ms [note the different QH]
U"short" ${ }^{\text {¹ }} 162$ V, T_hot ~225 K

Proposed test \#1-11.85 kA, D1U-QHs delayed by 5 ms

Proposed test \#2 - 9 kA, D1L-QHs delayed by 10 ms

Proposed test \#3 - 6 kA, D1L-QHs delayed by 50 ms

Proposed test with inverted polarity of the power supply -1

Proposed test with inverted polarity of the power supply -2

Frequency-domain model of a magnet

Simplified model

Frequency transfer function

Disclaimer

This is a qualitative example.
The simulation does not necessarily support the shortcircuit hypothesis.

After measuring a magnet known to be without shorts, the model can be validated and then used in a predictive way.

> Measurement data from J. Ludwin, M. Bednarek
$\underset{\text { HiLUCOMi }}{\text { Hit Prouect }}$

Annex

Proposed test \#2 - 9 kA, D1U-QHs delayed by 30 ms

Simulation of the proposed measurement of frequency TF

A $1 \mathrm{k} \Omega$ short across the two aperture midpoints would be visible in the frequency range $5 \mathrm{kHz}-50 \mathrm{kHz}$

These results are only qualitative

Simulations of transient after installing a parallel path

Type of parallel path installed	Peak current through the parallel path [A]	Peak voltage across D1L+D2L [V]	We expect to reduce / eliminate spikes
100Ω Resistor	0.9 A	90 V	no
10Ω Resistor	9 A	90 V	yes
10 V Zener Diode $+0.1 \Omega \mathrm{R}$	380 A	38 V	yes
10 V Zener Diode $+1 \Omega R$	72 A	80 V	yes
10 V Zener Diode + 5Ω R	16 A	90 V	yes D2L

Simulations of transient in case of capacitive coupling

- Idea proposed by Bernardo: not a short, but intermittent capacitive coupling
- I was able to reproduce spikes of a few V across the coils only by assuming a massive capacitance between the mid-point of D1 and D2
- I used 1 uF and 100 uH
- Note: estimated parasitic capacitance for the entire magnet is about 100 nF

Simulation cpr Measurement of QH discharge at 6 kA

Simulation cpr Measurement of discharge at 6 kA with D1U-QH delayed by 100 ms

Simulation cpr Measurement of discharge at 11.85 kA without QH delay

Option \#1: Installing a resistor across the presumed short

- Installing a resistor across the taps should reduce the spike occurrence (if parallel resistor <10 Ω)
- The current through the short, nor the power deposited in the short are unchanged
- This is because the presence of the parallel resistor does not change the voltages across the four coils. So the same voltage would be applied across the same changing resistance.
- Same current through the short \rightarrow Same power deposition, same risk of damage

Option \#2: Installing a resistor + Diode across the presumed short

- Installing a Diode across the taps where we believe there is the short
- Polarity is selected to limit the voltage across D1L+D2L [see diagram for the correct polarity]
- Voltage across the short effectively suppressed
- But large current (250-650 A) through the Diode
- And hence unbalanced currents in the magnet coils

\rightarrow Peak voltage across short [V] \simeq Peak current through Diode [A] \simeq Peak short current [A]

Option \#3: Installing a Resistor+Diode across the presumed short

- Diode polarity is selected to limit the voltage across D1L+D2L [see diagram for the correct polarity]
- A small resistor of 0.1Ω has already a significant effect: current through the Diode reduced, but voltage across the short is suppressed less effectively
- For resistance $\geq 1 \Omega$, Diode can't suppress the D1L+D2L voltage effectively

\rightarrow Peak voltage across short [V] \rightarrow Peak current through Diode [A] \rightarrow Peak short current [A]

Option \#4: Installing a Resistor+ZenerDiode across the p. short

- Zener Diode [voltage across the Diode clamped between -10 V and +10 V]
- Since during the simulated transient the voltage across D1L+D2L has always the same polarity, using a Zener Diode does not change the results
- However, using a Zener Diode could reduce the peak voltage in other transients [if the internal voltage distribution changes]

$$
\begin{aligned}
& \text { Additional resistor } \\
& \text { + Zener Diode }
\end{aligned}
$$

[^0]
Option \#5: Installing a Resistor+2*ZenerDiode across the p. short

- In this configuration, I don't see any current flowing through the parallel branch during the transient
- So it does not affect the transient

Additional resistor + 2*Zener Diode

Option \#6: Installing a Varistor across the p. short

- I didn't run an actual simulation
- Conceptually, it would have a similar effect with respect to the Zener Diode
- However, it would be more complex to analyze/model because of the not very well known characteristics - it would add unknowns

Additional varistor

Conclusion

- Solution with a Diode can effectively limit the voltage across D1L+D2L [presumed short position]
- This should lead to a reduction/elimination of the voltage spikes
- However, to be effective the Diode must carry significant current (250-650 A)
- This current would pass through taps
- Also, the currents in the upper/lower coils would be different during the discharge
- A small resistance of 0.1Ω in series to the additional Diode has already a significant effect: current through the Diode reduced, but voltage across the short is suppressed less effectively
- For resistance $\geq 1 \Omega$, Diode cannot suppress the voltage across D1L+D2L because the voltage drop across the resistor is higher than the fixed voltage drop imposed by the Diode
- A solution with a 0.7 V Diode in series to a 20Ω resistor would not limit the voltage across D1L+D2L, nor the current through the short, but could reduce the spikes on the coil voltages

MBHA001 - D_parallel - 0.7 V forward voltage

MBHA001 - D_parallel - 6 V forward voltage

MBHA001 - D_parallel - 20 V forward voltage

MBHA001 - D_parallel - 50 V forward voltage

MBHA001 - D_parallel + $1 \Omega-20$ V forward voltage

MBHA001 - D_parallel + $1 \Omega-50$ V forward voltage

MBHA001 - D_parallel + 0.1 $\Omega-0.7 \mathrm{~V}$ forward voltage

MBHA001 - D_parallel + $0.1 \Omega-6$ V forward voltage

MBHA001 - D_parallel + 0.1 $\Omega-20 \mathrm{~V}$ forward voltage

MBHA001 - D_parallel + 0.1 $\Omega-50 \mathrm{~V}$ forward voltage

MBHA001 - R_parallel=10000 Ω

MBHA001 - R_parallel=1000 Ω

MBHA001 - R_parallel=100 Ω

MBHA001 - R_parallel=25 Ω

MBHA001 - R_parallel=10 Ω

MBHA001 - R_parallel=1 Ω

[^0]: \rightarrow Peak voltage across short [V] \rightarrow Peak current through Diode [A] \rightarrow Peak short current [A]

