Simulations after installing an artificial short – Configuration 1

Assumption: fuse blows up in 1 μs

- Without R_{par fuse}, peak voltage across short is ~1.4 kV
- With $R_{par\ fuse}=100~\Omega$, peak voltage across short is ~500 V
 - Not sufficient to suppress the voltage
- With $R_{par\ fuse}=10\ \Omega$, peak voltage across short is ~130 V
 - Sufficient to suppress the voltage
 - Current through $R_{par\ fuse}$ before fuse blow-up is <1 μA
 - Amplitude of coil voltage spikes should be reduced from ~5 V to ~1 V
- Note: no current through the parallel path during magnet ramp-up (better for quench detection system)

Final proposed configuration:

50 V Zener Diodes in series to 10 Ω resistor in series to a 5 A fuse, with an additional 10 Ω resistor across the fuse

Simulations after installing an artificial short – Configuration 2

Assumption: fuse blows up in 1 μs

- Without R_{par path}, peak voltage across short is ~1.4 kV
- With $R_{par\ path}=1\ k\Omega$, peak voltage across short is ~1.1 kV
 - Not sufficient to suppress the voltage
- With $R_{par\ path}=100\ \Omega$, peak voltage across short is ~450 V
 - Not sufficient to suppress the voltage
- With $R_{par\ path}=10\ \Omega$, peak voltage across short is ~130 V
 - Sufficient to suppress the voltage
 - But current through R_{par_path} even before fuse blow-up is ~9 A
 - During magnet ramp-up, ~0.5 A through R_{par_path}

Previous configuration with the 10 Ω resistor across the fuse seems better because the additional resistor only influences the transient in case of fuse blow-up

