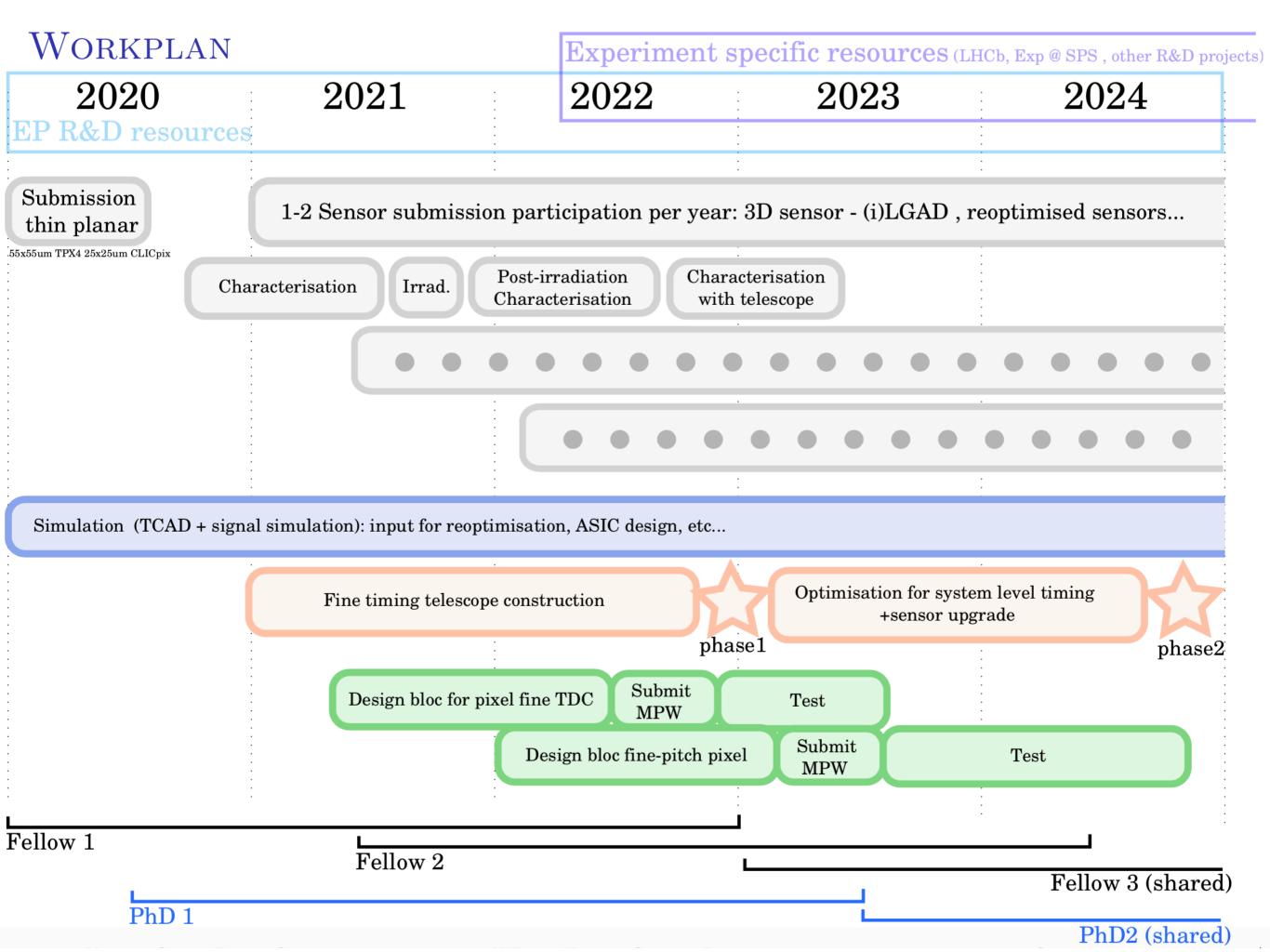

Hybrid fast timing sensor developments (EP R&D WP 1.1) Sensor R&D and telescope plans

Hybrid Silicon Sensors

Drive hybrid silicon pixel R&D towards proof-of-concept prototypes.

Available ROC


R/O Chip	TFS (nm)	Pitch (μm)	Size (cm²)	time bin (ns)	Data rate (Gbit/s)
Timepix3	130	55	2	1.56	5
Velopix	130	55	2	25	19
CLICpix2	65	25	0.1	10	0.4
RD53-A/B	65	50	2/4	25	5
Timepix4	65	55	7	0.2	82

ROC block developement

Specific ASIC development related to fine timestamp or fine-pitch covered here.

Ideally targetting 28nm, possibly prototyping in 65nm.

Links to IC and High Speed links work package

Performances @ SPS, FERMILAB and DESY beam lines

	$\sigma_{t \; tel}$ [ps] tel./single plane	$\sigma_{ extit{x tel}} \ egin{bmatrix} \mu_{ extit{m}} \end{bmatrix}$ SPS/FERMIL./DESY	rate @SPS [<i>kHz/cm</i> ²]	rate @FERMIL. [<i>kHz/cm</i> ²]	rate @DESY [<i>kHz/cm</i> ²]	Avail.
AIDA	-	2/2/2	1.6 ⁽¹⁾	0.6 ⁽¹⁾	9 ⁽¹⁾	Now
TPX3	270/646	2/2/10 ⁽²⁾	400 ⁽³⁾	3000 ⁽¹⁾	100 ⁽³⁾	Now
AIDA-ALPIDE 2-TPX4	60/85	2/2/2	9 ⁽¹⁾	3.5 ⁽¹⁾	50 ⁽¹⁾	2022
AIDA+ALPIDE 2-LGAD	35/50 ⁽⁴⁾	2/2/2	9 ⁽¹⁾	3.5 ⁽¹⁾	50 ⁽¹⁾	2024(?) ⁽⁵⁾
AIDA+MALTA 2-TPX4	60/85	2/2/2	400 ⁽³⁾	700 ⁽¹⁾	100 ⁽³⁾	2024 ⁽⁶⁾
AIDA+MALTA 2-LGAD	35/50 ⁽⁴⁾	2/2/2	90 ⁽³⁾	35 ⁽¹⁾	100 ⁽³⁾	2024(?) ⁽⁵⁾⁽⁶⁾
AIDA-TPX4 ϕ_1	30/85	2/2/10 ⁽²⁾	400 ⁽³⁾	25000 ⁽¹⁾	100 ⁽³⁾	2022
AIDA-TPX4 ϕ_2	22/70 ⁽⁷⁾	2/2/10 ⁽²⁾	400 ⁽³⁾	25000 ⁽¹⁾	100 ⁽³⁾	2024

⁽¹⁾ limited by ASIC rate

⁽²⁾ reduced resolution for 6.3GeV electrons

⁽³⁾ limited by beam rate

⁽⁴⁾performances at Vertex 2019

 $^{^{(5)}}$ not clear when it ALTIROC/ETROC would be available for this use, nor if it is even feasible to integrate them

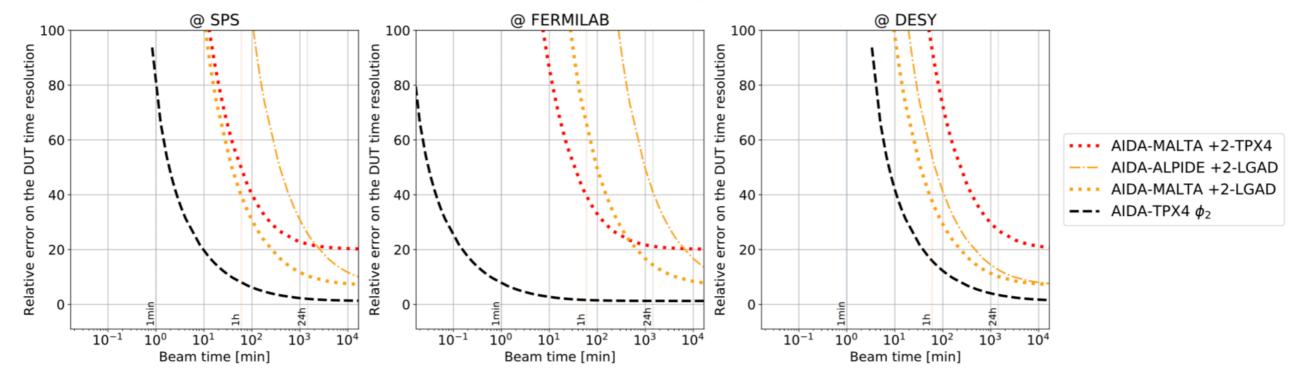
⁽⁶⁾MALTA is still prototype, not clear when available

⁽⁷⁾assuming we improve on thin planar sensors: ex. 3D sensors, iLGADs

RESULTS

Example 1 by ~ 2022

- Evaluate variation of timing resolution depending on intra-pixel position in LGAD for ATLAS HGTD/CMS MTD as function of ten track angle values.
- $All A_{feature} = 1 imes 1 \ \mu m^2$, $\sigma_{t\ DUT} = 30 \ ps$, $A_{pixel} = 1 imes 1 \ mm^2$, $A_{DUT} = 1 cm^2$, 5% systematic uncertainty on telescope timing resolution


	time to reach 30%			time to reach 10%			
	SPS	FERMILAB	DESY	SPS	FERMILAB	DESY	
TPX3	-	-	-	_	-	-	
AIDA	-	-	-	-	-	-	
AIDA-ALPIDE +2-TPX4	8d	20d	1.4d	-	-	-	
AIDA-TPX4 ϕ_1	12m	<1m	50m	2h	2m	8h	

► AIDA-TPX4 is the only short term option

RESULTS

Example 1 by $\gtrsim 2024$

- Evaluate variation of timing resolution depending on intra-pixel position in LGAD for ATLAS HGTD/CMS MTD as function of ten track angle values.
- ho $A_{feature} = 1 \times 1 \ \mu m^2$, $\sigma_{t\ DUT} = 30 \ ps$, $A_{pixel} = 1 \times 1 \ mm^2$, $A_{DUT} = 1 cm^2$, 5% systematic uncertainty on telescope timing resolution

► AIDA-TPX4 is the best long term option too