# Fresca2

# magnetic field angle measurement results

M. Bonora, G. Deferne, C. Petrone

on behalf of MM section





CERN – 13/03/2020 – Fresca2: magnetic field angle measurement results

#### Results at cryogenic temperature 1.9 K measured on 2018







CERN - 13/03/2020 - Fresca2: magnetic field angle measurement results



#### Measurement system at cryogenic temperature

#### **Cryogenic temperature in SM18**

- FFMM software
- Fast Digital Integrators (10x)
- Motor + encoder + slip-ring unit (MRU)
- Vertical rotating shaft in the helium
  - L = 249 mm

Number of turns-36Magnetic surfacem²0.10Radiusmm21.5





TE Technology Department



CERN - 13/03/2020 - Fresca2: magnetic field angle measurement results

#### Measurement system at cryogenic temperature

#### **Cryogenic temperature in SM18**

- FFMM software
- Fast Digital Integrators (10x)
- Motor + encoder + slip-ring unit (MRU)
- Vertical rotating shaft in the helium
  - L = 249 mm

Number of turns-36Magnetic surfacem²0.10Radiusmm21.5

## NO link between field angle and magnet mechanical references







#### Results at cryogenic temperature 1.9 K measured on 2018





CERN – 13/03/2020 – Fresca2: magnetic field angle measurement results

TE Technology Department

Field direction measured at

room temperature in SM18 by

- 1. Single stretched **wire**
- 2. Rotating coil scanner







#### Field direction measurements: stretched wire

Single stretched wire

- Mechanically aligned to gravity during the installation
- System offset calibration on reference magnet in 311











## Field direction measurements: stretched wire DC





CERN – 13/03/2020 – Fresca2: magnetic field angle measurement results



#### To compensate external influences (e.g.: the Earth magnetic field) measurement performed at $\pm 8$ A

| Measurement | Current<br>[A] | Field By<br>[Tm] | Field Bx<br>[Tm] | Angle<br>[mrad] |
|-------------|----------------|------------------|------------------|-----------------|
|             |                |                  |                  |                 |
| SSW         | 8              | -0.021257        | -0.000585        | 27.5            |
|             |                |                  |                  |                 |
| SSW         | -8             | 0.021526         | 0.000580         | 26.9            |
|             |                |                  |                  |                 |
|             |                |                  | Average          | 27.2            |
|             |                |                  |                  |                 |





### How the angle changes longitudinally? Horizontal rotating coil scanner









### Horizontal induction coil scanner

- A tube of 70 mm inner diameter was needed to support the measurement head
- A measurement head (68 mm max diameter), an induction coils of **754 mm**
- Level meter on board to refer to the gravity







CERN - 13/03/2020 - Fresca2: magnetic field angle measurement results



### Installation procedure

# Signal cable insertion from Side B



# Measurement head from Side A



#### Signal cable connection from Side A





Connect all cable needed to the electronic rack



Connection mechanical extension from Side A



Insertion the head from Side A

TE Technology Department



#### Electronic rack and measurement procedure



Measurement procedure driven by C++ Framework (FFMM)

- On board power supply provides the magnet current
- A control loop drives a motor to align the "mole" to gravity
- Pneumatic break block the position found
- Internal measurement coils start to rotate and measurements are taken rotating forewords and backwards to compensate system offset
- Process can start in next longitudinal position



TE Technology Department



CERN – 13/03/2020 – Fresca2: magnetic field angle measurement results

Measurements in three different **positions** and from both magnet **sides** to compensate system **offset** angles







Integral field angle: 27.2 mrad

Central field angle: 23.5 mrad

#### Measurement with respect to gravity on the magnet at present location







## Thank you for your attention





## Spare slides: cold tests 2018











#### **Results at cryogenic temperature: multipoles**



Measured Normal Multipoles - R<sub>ref</sub>33.33 mm



CERN – 13/03/2020 – Fresca2: magnetic field angle measurement results



#### **Results at cryogenic temperature: multipoles**







#### **Results at cryogenic temperature: multipoles**







## @ R<sub>ref</sub> 33.33 mm

| 6 kA |       |      |             |  |  |  |
|------|-------|------|-------------|--|--|--|
| n    | bn    | an   | bn Opera 2D |  |  |  |
| 2    | 2.6   | 2.8  | 0           |  |  |  |
| 3    | 31.7  | 0.2  | 25.7        |  |  |  |
| 4    | 0.1   | -1.6 | 0           |  |  |  |
| 5    | -39.9 | -2.2 | -34.8       |  |  |  |
| 6    | 0.2   | -0.9 | 0           |  |  |  |
| 7    | 5.9   | 0.52 | 4.6         |  |  |  |

| 8 kA |       |      |             |  |  |  |
|------|-------|------|-------------|--|--|--|
| n    | bn    | an   | bn Opera 2D |  |  |  |
| 2    | 2.6   | 2.8  | 0           |  |  |  |
| 3    | 55.2  | 0.9  | 50.8        |  |  |  |
| 4    | 0.1   | -2.0 | 0           |  |  |  |
| 5    | -35.3 | -1.9 | -31.3       |  |  |  |
| 6    | 0.3   | 0.9  | 0           |  |  |  |
| 7    | 4.8   | 0.4  | 3.9         |  |  |  |

TE Technology Department



#### Consistency with measurements performed in 2017





