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Description ~ As the LHC readies for Run-3 and its second decade of data-taking, the world around us is changing rapdily. Since the discovery of the Higgs boson
in 2012 cloud computing has fundamentally changed the style and access of distributed computing, Deep Learning and Data Science have entered
the public vocabulary and Open Science and Reproducibility has been grown in importance. The LHC experiment, with their vast amounts of data,
unique dataset is necessarily find themselves at the forefront of these developments. In this talk, | will discuss about how these trends enable new
research avenues and data anlaysis suchasa program for Beyond the Standard Model search usinng

e
cloud-native workflows and RECAST, "rediscovering" the Higgs boson in CERN Open Data within a few minutes on the cloud, to enabling third-party -

research through open access to high-fidelity data products of LHC searches the wider HEP community.

@

Organized by M. Girone, M. Elsing, L. Moneta, M. Piefini........ Coffee will be served at 10h30

DataScience23.10... data_science_semi.. ¢§? Recording

Webcast
B¢ There is a ive weboast for this event

Team: J. Brehmer'?, K. Cranmer'?, Irina Espejo’, S. Macaluso' ? and H. Miiller!

ESLEEERASRE  Intitutions: ! Center for Data Science, New York Uriversity [ The SCAILFIN Project Thanks to everyone at #SciPy2019 who came and
?Department of Ph New York University .
asked me great questions about pyhf!

W Scalabl berinfrastruct licati e Matthew Feickert
S\iris calable cyberinfrastructure applications e e
©hep ¥ pPp ¢
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ANALYSIS SYSTEMS

Modularity & Declarative

interfaces configuration

Event selection, Statiedl Statistical Result,
, . Work atistical 3
Columnar data systematic Histograms b:‘i‘l’:izlg orkspace analysis diagnostics

uncertainties

Y il T Q

Data Selection & From workspaces Fit results Reusability
access systematic uncertainties to likelihoods and diagnostics and preservation




TOPICS

Accelerating analysis design Core technologies:
* more powerful observables automatic differentiation

* end-to-end optimization GPUs & TPUs

* benchmarking of algorithms Cloud-native : docker, kubernetes

Accelerating fitting Workflows & REANA

Functions as a service Accelerating

* pyhfand a fitting service
analysis design

More efficient simulation

® excursion

* Probabilistic programming
Extending impact of results

* RECAST




PREDICTIONS IN PARTICLE PHYSICS
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kinetic energies and self-interactions of the gauge bosons
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kinetic energies and electroweak interactions of fermions

W, Z,~.and Higgs masses and couplings

1, ., 1 2 R
+ 5|(70,,—§g7'~W,,— g'YB,,)o| — V(o)

L

+ @' Tg)G: + (GiL6R+ Lo R+ he.)
——

interactions between quarks and gluons fenmion masses and couplings 1o Higes




Key:

DETECTOR SIMULATION
Conceptually: Prob(detector response | particles )

Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable
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THE CAUSAL, GENERATIVE MODEL

Detector Shower Parton-level Theory

Observables . . e
Interactions splittings momenta parameters
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10® SENSORS — 1 REAL-VALUED QUANTITY

Most measurements and searches for new particles at the LHC are based on the
distribution of a single summary statistic

» choosing a good summary statistic (feature engineering) is a task for a skilled
physicist and tailored to the goal of measurement or new particle search

* likelihood p(x|0) approximated using histograms (univariate density estimation)
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This doesn’t scale if x is high dimensional!




THE DISCOVERY OF THE HIGGS BOSON

ftot(Dsima gla) = H POiS(nc|Vc(a)) H fc(xce|a) :
e=1

cEchannels

pr(ap|ap)

peES

11




AUTOMATIC DIFFERENTIATION

dy dwiq

with wyg = x.

2. reverse accumulation computes the recursive relation: =
dwi dwi+1 dwz
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pyhf: auto-differentiable binned HEP likelihoods

Kyle Cranmer (NYU) Matthew Feickert (SMU)

Lukas Heinrich (CERN), Giordon Stark (UCSC)

pyhf

pure python implementation of HistFactory

implementation of HistFactory likelihood (1) as a computational graph of multi-
dimensional array operations.

Use of array ("tensor") operations through a common API layer around high-
performance tensor libraries: e.g.

ey gl OPyTorch

Tensor

Installation:
$> pip install pyhf

Example: simple number-counting experiment

Auto-Differentiation:

Tensor libraries from ML communty provide exact gradients oL oL
for use in minimization. 8,“ ) 691

Optimizers

pyhf likeliehood are simple tensor-value python functions. Can use multiple
minimization algorithms, such as scipy.minimize or MINUIT




OTHER ADVANTAGES OF USING TENSOR BACKENDS

Slide from Matthew Feickert

¢ All numerical operations implemented in tensor backends through an
APl of n-dimensional array operations NumPy

e Using deep learning frameworks as computational backends allows
for exploitation of auto differentiation (autograd) and GPU
acceleration

e As huge buy in from industry we benefit for free as these frameworks °
are continually improved by professional software engineers P)/TO rCh

Scaling of Interpolation Code O

e Preliminary results

CPUs
107 e Show hardware acceleration
H giving order of magnitude 1F TensorFlow
Z 100 speedup for some models!
f GPUs e Hardware acceleration
£ o o ColabGPUt benchmarking planned
® ColabTPU tf 7 ” . ey n
o comcrum e Improvements over traditional :

Total Number of Bins

0 1000 2000 3000 4000 5000 6000 7000 o 10hrs to 30 min; 20 min to 10 sec
(Model Complexity) i




ABOUT NEWS SCIENCE RESOURCES Q SEARCH | EN

MAKING IT STANDARD

) CERN Council appoints
Fabiola Gianotti for second
term of office as CERN

10 years later: community embraces W srccmn
. . . . Press release | 6 November, 2019
publishing likelihoods as a standard

e Moved to JSON schema

)_Newgopen releaseallows
LHCb explores the beauty of theorists to explore:...
ABOUT NEWS SCIENCE RESOURCES Q SEARCH | EN - lepton universa |

I'n

New open release allows
theorists to explore LHC data ~opSh

pushing backthe

in a hew Way frontiers,

The ATLAS collaboration rel full analysis likelihoods, a first for an
LHC experiment

9 JANUARY, 2020 | By Katarina Anthony

providing Open
Acces..

Sitidown for i p
coffee with the
Standard Model / ’ f
CERN | News| |
Explore ATLAS open likelihoods on the HEPData platform (Image: CERN) p
Whatif you could test a new theory against LHC data? Better yet, what if the expert View all news ) / differentiable
knowledge needed to do this was captured in a convenient format? This tall order is now on f

Pikelihoods

Display a menu y from the ATLAS collaboration, with the first open release of full analysis likelihoods




| [4]: | tmatplotlib notebook

FITTING SERVICE
fig.set_size_inches(9.33,7)

apply_decorations(ax,label = 'Open Likelihood (in progress)')

Figure 1

With JSON format, it is much
easier to stream necessary
data to a fitting service.

* Lukas prototyped this
using functions-as-a-
service

|deally have a machine with a
big GPU or TPU for this

e From 10 min to a few

b1b; production ; b;—bi3; m?) = 60 GeV
e

= y 7 . s P .
[ . . .
8 1600 ATLAS Open Likelihood (in progress)
& Vs =13 TeV,139 fb~' ‘
£ 1400 Alllimits at 95% CL
—— Observed Limit e

12001~ @ Expected Limit (+10)
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Se CO n ds ! No handles with labels found to put in legend.

i [*]: | for x in glob.glob('results/*.json’):

cA = [{'region': ‘A’
cC = [{'region':

os.unlink(x)
: ‘filename': £} for £ in glob.glob('RegionA/patch*_60.json')]
‘filename': f} for f in glob.glob('RegionC/patch*_60.json')]

configs = cA[:] + cC[:

Accessing Fitting Service e o bt b

import time
: def func(data): import concurrent.futures

filename = data['filename'] fig.canvas.draw()

region = data['region']

m = re.compile("sbottom (\d+)_(\d+)_(\d+)").search(filename).group(0) with futures. (max_y _WORKERS) as executor:

outname = 'results/region{}.result.{}.json'.format(region,m) for i, in enumerate(tqgdm(executor.map(func, configs),total = len(configs))):

for i in range(10): if i >5andi %5 ==0:

try: make_plot (ax,label = 'Open Likelihood (in progress)', color = 'steelblue', showPoints = True)

d = requests.post(
"{}/region{} ' .format (FITTING_SVC,region),

fig.canvas.draw()
time.sleep(.005)

data = open(filename), headers = {'Content-Type': 'application/json’} make_plot(ax, label = 'Open Likelihood', color = 'gold', showPoints = False)

)-Json()
json.dump(d, open (cutname, 'w'))

break sso (NN 91/259 [01:55<01:54, 1.46it/s]

except:

pass#retry /home/jovyan/interpolate.py:365: UserWarning: No contour levels were found within the data range.

c = ax.contour(xi,yi,zi, [level])




ACTIVE LEARNING

Instead of generating Monte Carlo a priori, generate it
on demand where it is relevant!

1 An algorithm for finding exclusion contours

Drastically more efficient use of computing resources —

. ~AT201S

10°

4 points

2Dtoyanalysis

grid

10 50 100
#samples



https://indico.cern.ch/event/708041/contributions/3269754/

Institute for Research & Innovation

in software for Wigh Energy Piysics I NStitutions: * Center for Data Science, New York University

2 Department of Physics, New York University

e Goal is to find level sets of black-box functions
that are expensive to evaluate. Examples: test
statistics from complex simulations.

e Evaluate the black blox function at interesting

points only instead of evaluating at whole
regular grid. We use a Gaussian process to:
interpolate between samples and model
uncertainty in the knowledge of the black box
function.
The acquisition function regulates the
exploration vs exploitation tradeoff. Select
one that minimizes global uncertainty of the
location of the excursion set.

Future: efforts will focus on scalability wrt the
dimensionality of the function domain space.
Example, likelihood ratio as function of mass,
charge, spin,...

iris  Scalable cyberinfrastructure applications

ep Team: J. Brehmer!?, K. Cranmer'?, Irina Espejo?, S. Macaluso*? and H. Miiller!

. The SCAILFIN Project

in collaboration with G. Louppe? and L. Heinrich®
2University of Liege, 3CERN

Regular grid
(expensive)

Interesting points
(we don’t know a
priori where they are)

Exploration vs
exploitation

O

GPyTorch

) diana-hep/excursion
() irinaespejo/excursion

.Is it all worth it? Yes! [3]

Dtoyanalysis stopsearch

Dtoyanalysis darkhiggs

[3] L. Heinrich, G. Louppe, K. Cranmer, Excursion Set
Estimation using Sequential Entropy Reduction for Efficient
Searches for New Physics at the LHC, ACAT 2019

README.md

Installation and Example

Install via pip install excursion==0.0.1a0 .

DOI | 10.5281/zenodo.1634427 | & launch |binder | build |passing

This package implements a Bayesian Optimization procedure based on Gaussian Processes to efficiently determine
excursion sets (or equivalently iso-surfaces) of one or many expensive black-box functions.

tributions/3269754, 4

https://indico.cern.ch/event/7!

excursion — Efficient Excursion Set Estimation



https://indico.cern.ch/event/708041/contributions/3269754/

DIFFERENTIABLE PROGRAMING

Automatic differentiation is not just for Machine Learning!

o Differentiable Programming

o Attitude: we can auto-diff through analysis and reconstruction

e End-to-end optimization

Modularity &
interfaces

Declarative
configuration

Statistical
Columnar data ,’,; e Workspace
< building
uncertainties

Y T

Selection &
systematic uncertainties

From workspaces
to likelihoods

 Convolutional Neural Networks are a close relative of map. A normal map applies a
function to every element. Convolutional neural networks also look at neighboring clements,
applying a function to a small window around every element.®

® ©® ©® ® ©® ©® ®@ ©® ®
‘Windowed Map = Convolutional Layer
Haskell: zipWith a xs (tail xs)

Two dimensional convolutional neural networks are particularly notable. They have been
behind recent successes in computer vision. (More on conv nets.)

statistical Result,
‘analysis diagnostics

Q

Two Dimensional Convolutional Network
Fit results

and diagnostics

Reusability
and preservation Recursive Neural Networks (“TreeNets”) are catamorphisms, a generalization of folds.
They consume a data structure from the bottom up. They're mostly used for natural
language processing, to allow neural networks to operate on parse trees.

LR

Catamorphism = TreeNet
Haskell: cata a

http://colah.github.io/posts/2015-09-NN-Types-FP/




END-TO-END OPTIMIZATION WITH AUTODIFF

o e . Kyle Cranmer @KyleCranmer - 19h v
INFERNO: Inference'AWare Neural Optlmlsatlon ‘ Take note! Here is a nice example of differentiable programming. It shows
end-to-end optimization of a NN for event categorization wrt. final
statistical analysis (using pyhf). Requires running gradients through
results of maximum likelihood with fixed-point differentiation §

Pablo de Castro Tommaso Dorigo
INFN - Sezione di Padova INFN - Sezione di Padova (2 Nathan Simpson @ CERN v
pablo.de.castro@cern.ch ‘tommaso.dorigo@cern. ch <« @phi_nate

I'm *very* excited to share with you what I've been
working on recently in collaboration with
@lukasheinrich_!

We've developed a module that performs end-to-end
learning with respect to statistical inference in particle
physics.

SIMULATOR OR NEURAL SUMMARY INFERENCE-AWARE
APPROXIMATION NETWORK STATISTIC LOSS

try it yourself at github.com/pyhf/neos! :)

stochastic gradient update ¢'™ = ¢' + () VU

Backpropagate: dLimit /dSelection including full statistical treatment with systematics.

0.6 100
4
0.5
80
2
0.4
> 60
3
2
> 0 < 03 g
g
E 40
0.2
-2
0.1 20
=44 e

-4 -2 0 2 4 %0 20 30 4w s0 e 0 0.0 05 10 https://github.com/pyhf/neos

X epoch nn output



https://github.com/pyhf/neos

Effective field theory

Energy

Supersymmetry7

=

E<A LHC Higgs

xtra dlmen |ons7

N

Lerr = Lsm + Z A2 0; +

Effective ﬁeld theo

measurements

[STFC/ Ben Gililand, Sean Carroll, Friedrich Justin Bertuch 1806, symmetry]

@MPOSII”'
@ HK@GS =

Dragons?

Composite Higgs?

Matching

\ \ Measurements

Flavour




HIGH DIMENSIONAL EXAMPLE

When looking for deviations from the standard model Higgs,
we would like to look at all sorts of kinematic correlations

* thus each observation x is high-dimensional

T — FT - —— T T T s T T
= - = 9 6000k, J
Seshesony S ey, s000p g 3
g 4000 4 8 &
s s Se0r 7 S4ooo)
4000 1 = = =
2 H Baoool- i ¢
2 a00]- 1 Beeeor 18 Bocon- ]
20000 1
050 o8 ) ] % 05005 2 0 2
o @, 6, or @

E2 0 2 050 05
cos 6 @ ‘coso, of cos,

05 0 05 E2 o 2 050 05
cos 6 @ ‘cos0, of cos),




LEARNING THE LIKELIHOOD RATIO

parameter §

V XX
' é""\

' )
: .z,’;i»:‘y

UL
LS

A 4

augmented data

Simulation

Amortized likelihood

proposal  {«------------------

[¢]

X
unsupervised
learning

pproximats

likelihood

- 6 @
prior

optional active learning

e
X
data

posterior

confidence
sets

e) :

A 4

approximate
likelihood
ratio

argmin L[g| —> 7(z]0) —>
9

Machine Learning

Amortized posterior

[¢]

approximate
posterior

unsupervised
learning

Amortized likelihood ratio

proposal

]
X
supervised
learning

approximate
likelihood
ratio

arXiv:1805.12244

PRL, arXiv:1805.00013

PRD, arXiv:1805.00020
arXiv:1808.00973
physics.aps.org/articles/v11/90

0;

0;

Inference

Amortized surrogates

trained with augmented data

augmented
simulator

X, t(x,2), r(x,z)



https://physics.aps.org/articles/v11/90

arXiv:1805.12244

LIKELIHOOD-FREE INFERENCE PRL, arXiv:1805.00013
PRD, arXiv:1805.00020
physics.aps.org/articles/v11/90
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l nc
\ Vi X%
A LR TR
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& > >~ %'ey

OO 0,
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0o
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m ) " argminZfg] — #(2]0) — | [ 07
s o 10 g

2D histogram —-= SALLY
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_ ... ROLR -=-- RASCAL N N 1 !
ichine Learning Inference

0.075 | & tmemnsia We can use augmented data to
oaso]. X dramatically improve training

\ ‘e \
01254 \ \ ]
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\ r \
01004 \ * . /
\ s \
\ - \

Estimation error

007514 . — without augmented data
0.0501 % ‘ \\ —
.\. \ ‘..' O\
0.025 - “w . - .
\..\1__:._3.-;.,.:.,_.;. Technically similar to PDF weights
0.000 ; e e
103 104 10° 106 107

Training sample size



https://physics.aps.org/articles/v11/90

IMPACT ON STUDIES OF THE HIGGS BOSON

(based on a 42-Dim observation X)
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J Brehmer, J Pavez, G Louppe, K.C. PRL & PRD 2018 [arXiv:1805.00013 & arXiv:1805.00020]
"Better Higgs Measurements Through Information Geometry” [arXiv:1612.05261] & CARL [arxiv:1506.02169



http://arxiv.org/abs/1506.02169

BENCHMARKING STXS IN WH

¢ Simplified Template Cross-Sections (STXS)
define observable bins that are supposed to

capture as much information on NP as possible

[N. Berger et al. 1906.02754; HXSWG YR4]

Stage 1.1 = V(- leptons)H
[ I ]
[arswe ] [[aa—zn ] IET

Py
0

[
75 1
[

1

150 L I
[
250 0 —
400 :
| f

o

|| |
| = |
[ s I
| [

Ojet  1det > 2jet

Ojet et > 2t Ojet et > 2-et

o Let’s check! How much information on

A o 1
Onp = O — 42 = (6'0)0(616) - 1(6'D"0)" (6 Do)
Onw = ¢l oW, W
B) _ (1t 50 A an
Oty = (91D )(Qro"+" Q1) ,

can we extract from p;, — WH — (v bb ?

[JB, S. Dawson, S. Homiller, F. Kling, T. Plehn 1908.06980]

Results: STXS are indeed sensitive to operators,
adding a few more bins improve them,
but a multivariate analysis is still stronger
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34 —— Imp. STXS
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HANDS-ON TUTORIAL

We accomplished a lot!

From scratch:

* Generate simulated data for EFT with

MadGraph

e Fast detector simulation

¢ Trained neural network to learn likelihood

ratio

e Trained neural network to learn Score

(Optimal Observable)

* Calculated expected limit for both

approaches and compared to simple 1-d

histogram approach

e Calculated Fisher information matrix

This is workflow for several published papers

¢ To speed this up, working to streamline

MadMiner with REANA

AT DESY LAST WEEK

https://cranmer.github.io/madminer-tutorial/

MadMiner Tutorial

Introduction

MadMiner Tutorial
Preliminaries
Overview
Define process to study *
Morphing
Interactive Morphing Demo
Create training data
Set MadGraph Directory
Parton Level *
With Delphes
Train model
Likelihood Ratio *
Score *
Likelihood
Statistical Analysis
Limits on EFT parameters *
Fisher Information
Information Geometry

Congratulations

<2

Introduction

MadMiner tutorial

This is a tutorial on MadMiner developed by Johann Brehmer, Felix Kling, Irina Espejo,
and Kyle Cranmer. It is built using Jupyter Book.

ssgmin L] — #(+15) —

Siannlation Mackine Learming Tnference

Introduction to MadMiner

Particle physics processes are usually modelled with complex Monte-Carlo
simulations of the hard process, parton shower, and detector interactions. These
simulators typically do not admit a tractable likelihood function: given a (potentially
high-dimensional) set of observables, it is usually not possible to calculate the
probability of these observables for some model parameters. Particle physicisists
usually tackle this problem of “likelihood-free inference” by hand-picking a few
“good" observables or summary statistics and filling histograms of them. But this
conventional approach discards the information in all other observables and often
does not scale well to high-dimensional problems.

In the three publications “Constraining Effective Field Theories With Machine
Learning”, “A Guide to Constraining Effective Field Theories With Machine Learning”,
and “Mining gold from implicit models to improve likelihood-free inference”, a new
approach has been developed. In a nut shell, additional information is extracted from
the simulations that is closely related to the matrix elements that determine the hard
process. This “augmented data” can be used to train neural networks to efficiently
approximate arbitrary likelihood ratios. We playfully call this process “mining gold”
from the simulator, since this information may be hard to get, but turns out to be very
valuable for inference.



https://cranmer.github.io/madminer-tutorial/

(@ irs  Scalable cyberinfrastructure applications
K/ hep Team: J. Brehmer!?, K. Cranmer'?, Irina Espejo?, S. Macaluso*? and H. Miiller!
insoware o igh vy ses. INstitutions: * Center for Data Science, New York University The SCAILFIN ProjeCt

2 Department of Physics, New York University

i Physics simulations
MadMiner on REANA ysics simulati configure

dockerhub/madminertool/
CockerdSSCkenun A SeE PRVE LS [1] Mining gold from implicit models to improve
likelihood-free inference, J.Brehmer, G.Louppe, J.Pavez.
[ generate simulations ] and K.Cranmer, arXiv:1805.12244 (2018)

physics + detector

Simulators provide a high-fidelity description of
phenomena. If they are too complex the likelihood
is intractable leading to poor statistical analysis

4

MadMiner [1], [2] wuses: advances in Neural |:>
Networks + latent simulator information to estimate
the likelihood ratio

[2] MadMiner: Machine learning-based inference for
particle physics, J. Brehmer, F. Kling, I. Espejo and K.
Cranmer, Comput.Softw.Big Sci. 4 3 (2020)

combine

Machine Learning

sample Inference
ﬁ dockerhub/madminertool/
i
/ \\\ i
To deploy MadMiner in a scalable way we need: ST E— ( train + evaluate )
v/ containerization reana !;‘ﬂ?ﬁfevam.fi.es
- .
v parallelization specify the steps, © ccailfin/uorkflou-madminer

() dianahep/madminer

1 then builds the
v reusability workflow plot + results|
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70 TB Dataset OpenStack Magnum Job Results Interactive
Visualization
25000 Kubernetes Jobs
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Google Cloud
O
e Ju pyter
Google Cloud
Storage
70 TB Dataset Cluster on GKE Job Results Interactlve

Visualization
Max 25000 Cores
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 HEP analysis on Cloud w/ standard ingredients is possible
* Terabit per second throughput for analysis.

Network Traffic Sent

by project id, bucket name (sum) 1 min interval (rate)
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e All using s ] . iis
achievable for anyone
* O(10k)/analysis nodes not an issue on short notice
* haven't pushed limits yet.
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SHIFTING FROM REPRODUCIBILITY TO REUSE
o e —

PhySICS https://doi.org/10.1038/541567-018-0342-2 a
Corrected: Publisher Correction OPEN

e | | T oy
Open is not enough o | 8 N

Merge

XiaoliChen'?, Siinje Dallmeier-Tiessen™, Robin Dasler'", Sebastian Feger'?, Pamfilos Fokianos', Fit model to data
JoseBenito Gonzalez', HarriHirvonsalo'#%2, Dinos Kousidis', Artemis Lavasa', Salvatore Mele', ‘ Pmm:mm ‘
Diego RodriguezRodriguez', Tibor Simko™, Tim Smith’, Ana Trisovic's*, Anna Trzcinska', [ |

loannis Tsanaktsidis', Markus mermann’, Kyle Cranmer$, Lukas Heinrich®, Gordon Watts’,
Michael Hildreth?, LaraLloret Iglesias®, Kati Lassila-Perini* and Sebastian Neubert

The solutions adopted by the high-energy physics community to foster reproducible research are examples of best practices - :
that could be embraced more widely. This first experience suggests that reproducibility requires going beyond openness.
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Reproducible research data analysis platform
2| Example of i low on REANA mimickil b d the standard model (BSM) analysis . This figure shows an

aple where the experimental data is compared to the predictions of the standard model with an additional hypothesized signal component. The

aple permits one to study the complex computational workflows used in typical particle physics analyses. a-c, The computational workflow (a) may
ist of several tens of thousands of computational steps that are massively parallelizable and run in a cascading ‘map-reduce’ style of computations
stributed compute clusters. The workflow definition is modelled using the Yadage workflow specification and praduces an upper limit on the

3l strength of the BSM process. A typical search for BSM physics consists of simulating a hypothetical signal process (c), as well as the background
esses predicted by the standard model with properties consistent with the hypothetical signal (marked dark green in (b)). The background often
ists of simulated background estimates (dark blue and light green histograms) and data-driven background estimates (light blue histogram).
stistical model involving both signal (dark green histogram) and background components is built and fit to the observed experimental data (black

Flexible Scalable Reusable Free
‘ers). b, Results of the model inits pre-ft configuration at nominal signal strength. We can see the excess of the signal over data, meaning that the
inal setting does not describe the data well. The post-fit distribution would scale down the signal in order to fit the data. This REANA example is
Run many Support for remote Containerise once, Free Software. MIT cly available at ref. . For icon credits, see Fig. 1.
computational workflow compute clouds. reuse elsewhere. Cloud-  licence. Made with @ at
engines. native. CERN,

I'4 \ CERN
kubernetes
&/ Z

http://reanahub.io https://doi.org/10.1038/s41567-018-0342-2
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BUILD IT AND THEY WILL COME

In 2010 we identified a use-case with

high scientific value for community recast

Lukas Heinrich

e Conservative narrative compared
to “open data”

@ ATLAS PUB Note y

\TLAS ATL-PHYS-PUB-2019-032 7%
EXPERTMENT
11th August 2019

» Not conservative enough for
many. Lots of resistance

o , RECAST framework reinterpretation of an ATLAS
L4 Peop | e sal d It cou |d nt be dO ne, Dark Matter Search constraining a model of a dark
Higgs boson decaying to two b-quarks

our workflows are too
complicated

The ATLAS Collaboration

* Hard to get effort to work on it.

a
faithful reinterpretation of the analysis. The dataset has an integrated luminosity of 79.8 fb™'
and was recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass
energy of V5 = 13TeV. Constraints on the parameter space of the dark Higgs model for a
fixed choice of dark matter mass i, = 200 GeV exclude model configurations with a mediator
mass up to 3.2 TeV.

Got lucky with an amazing student
that took a risk and just built it.

ATL-PHYS-PUB-2019-032

12 August 2019

@l

e Containers & Cloud technology

° 9 | t ©2019 CERN for the benefit of the ATLAS Collaboration.
y e a rs a e r c e Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

Orig Proposal in 2010: [arXiv.org:1010.2506]



https://arxiv.org/abs/1010.2506
https://arxiv.org/abs/1010.2506

TRAINING

Analysis preservation bootcamp

Participants in Analysis Preservation Bootcamp showing off their ability to
reproduce an LHC analysis. Photo Credit: Samuel Meehan

Josh McFayden
@JoshMcFayden

Thoroughly enjoying myself at an @iris_hep/@diana_hep
analysis preservation bootcamp @CERN today!
indico.cern.ch/event/854880/0...

A 4

GitLab CI/CD

Docker
containers

Q© Josh McFayden @JoshMcFayden - Feb 18, 2020 L 4
Replying to @JoshMcFayden and 3 others
2 PROGRESS
Build Fit

@ build_ana (8] @ run_fit c
@ build_ana_image

(©) build_fit ls}

Josh McFayden
@JoshMcFayden

Q

View image on Twitter

Today: REANA
reana

Your workflows

© awesome-workflow #7
Finished aminute 3go




Original analysis (model A) Recast analysis (model B)




SYNTHESIS

active learning / sequential design / black box optimization

Active Sciencing

simulation-based /

reusable workflows likelihood-free

inference engines



https://github.com/cranmer/active_sciencing

Institute for Research & Innovation

in software for Wigh Energy Piysics I NStitutions: * Center for Data Science, New York University

2 Department of Physics, New York University

ROB

Reproducible Open Benchmark Platform

e ROB is an experimental prototype for enabling
community benchmarks of data analysis
algorithms. The goal of ROB is to allow user
communities to evaluate the performance of
their different data analysis algorithms in a
reproducible competition-style format.

The workflow template and input data are
defined by a coordinator. The template contains
placeholders for workflow steps that are
implemented by the participants (e.g., with
Docker containers). The backend processes the
submission workflows. The user interface allows
participants to submit new runs and to view the
results.

iris  Scalable cyberinfrastructure applications

ep Team: J. Brehmer!?, K. Cranmer'?, Irina Espejo?, S. Macaluso*? and H. Miiller!

The SCAILFIN Project

in collaboration with S. Hsu*, A. Maritz*, A. Rawat* and C. Suaysom*
“University of Washington

&kdocker
()

&

Scientist

G:

fillin wflow template

Leaderboard

Architecture of ROB

Front-End

flowS‘erv

Back-End

(scailfin/flowserv-core

() scailfin/rob-webapi-flask
Oscailfin/rob-ui

() sebastianMacaluso/TopTagComparison

We can use the same technology to streamline comparison

of up-stream tools like ML-based jet taggers.

e Building ROB & FlowServe on top of REANA




NN-BASED SIMULATION TRAINED ON DATA

JUNIPR is a generative model for jets.
Can train on real data!

tractable likelihood

n—1
Pe({pr,--pa}) = HPt(ki””,...,kiitl>|k<t%...,kt(”)}
t=1

% Py (end|k™, .. k).

... and it is interpretable

0.08
Pythia ete™— ¢q
C/A clustering
o 0.06 9 — JUNIPR cont. prob.
Z;i Pythia freq.
2 0.04
0.02
0.00 T T T T
0.002 0.01 0.1 0.5

z (all t’s)

Andreassen, Feige, Frye, Schwartz arXiv:1804.09720




PROBABILISTIC PROGRAMING

Idea: hijack the random number generators and use Neural
Network to perform a very fancy type of importance sampling

probprog/pyprob
o e Neural Network
NN ﬁ‘ b .
powered inference
engine (python)

* real-world scientific
simulator (C++)

simulator C++

Pythia / Sherpa / GEANT /...

Observation Mean Simulated Observation

8

S ey, arXiv:1807.07706

NERSC, Lawrence Berkeley National Lab




PROBABILISTIC PROGRAMING

OXFORD A NYU

;‘ | ] .
@) H | g h I | g h ‘t https://arxiv.org/abs/1907.03382
___

Finalist for best paper award at SC19 (Super Computing)
- Largest scale Bayesian inference ever usingin a

universal probabilistic programming language
- Applied to complex LHC Physics use case: Sherpa code
base of ~1M lines of code in C++

- 230x speedup for synchronous data parallel training

of a 3DCNN-LSTM neural network
- 1,024 nodes (32,768 CPU cores)
- 128k minibatch size, largest for this NN architecture
- One of the largest-scale use of PyTorch built-in MPI

- Novel protocol (PPX) to execute & control existing,
large-scale, scientific simulator code bases

"~ Momentum [GeV/c]
FSP Energy 1

- C
) RMH

Energy [GeV]
Decay Channel
3
[ RMH




SUMMARY

Accelerating analysis design Core technologies:
* more powerful observables automatic differentiation

* end-to-end optimization GPUs & TPUs

* benchmarking of algorithms Cloud-native : docker, kubernetes

Accelerating fitting Workflows & REANA

Functions as a service Accelerating

* pyhfand a fitting service
analysis design

More efficient simulation

® excursion

* Probabilistic programming
Extending impact of results

* RECAST




Sorry if this is a little disorganized, COVID has

complicated work life




