

Radiation tolerant small-pixel passive CMOS sensors with RD53A readout

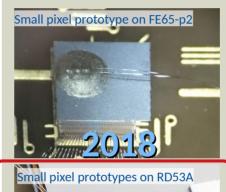
RD50 Meeting, 20.11.2020

<u>Y. Dieter</u>, M. Daas, J. Dingfelder, T. Hemperek, F. Hügging, J. Janssen, D.-L. Pohl, M. Vogt, T. Wang, N. Wermes, P. Wolf

Physikalisches Institut der Universität Bonn

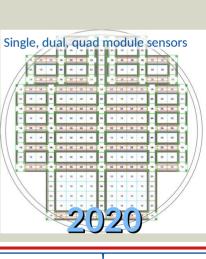
PASSIVE CMOS SENSORS USING LFOUNDRY PROCESS

Large pixel prototype

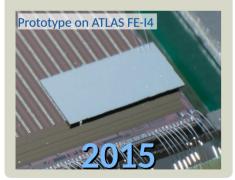

- 50 x 250 um² pixels, ATLAS IBL planar geometry
- Performance comparable to ATLAS IBL sensors after irradiation
 > 1 x 10¹⁵ neq/cm²
- Investigation of AC-coupling schema, pixel biasing schemes (bias dot vs. resistor biasing)

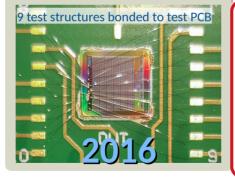
Test structures

- Many structures produced (> 15)
- Varying designs: guard rings, pixel isolation, implantation geometries
- Investigations of break down with TID (2 master theses)
- \rightarrow Identified enhanced guard ring structure
- Investigation of sensor capacitances (2 bachelor theses)


Small pixel prototype

• 50 x 50 um² pixels, ATLAS ITk pixel geometry

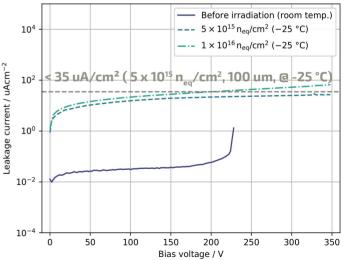

Sensor for ATLAS ITk modules

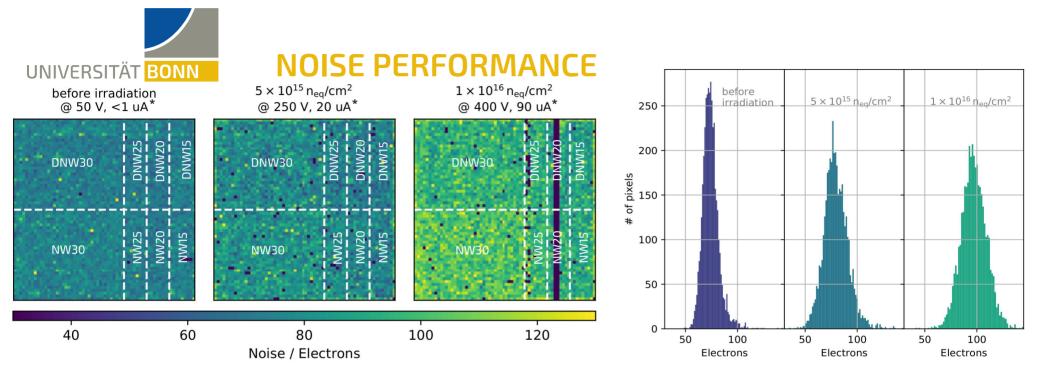

- 50 x 50 um² pixels, 25 x 100 um² pixels
- Full-size ATLAS ITk pixel modules
- RD53A and RD53B compatible

This talk Dedicated design

From D.-L. Pohl Trento 2020

Byproducts of DMAPS efforts

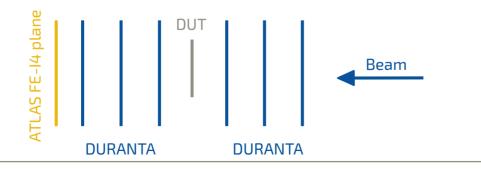


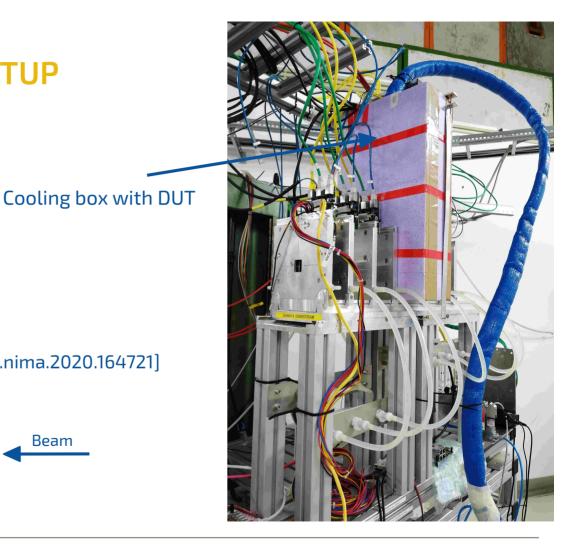

SMALL PIXEL PROTOTYPE

- Passive CMOS pixel sensor in 150 nm LFoundry technology
- Resistivity of bulk material: $5 7 k\Omega cm (p-type CZ wafer)$
- 100 um thick, etching, backside implantation + metallization
- 50 um x 50 um pixels in 64 x 64 matrix
- Different fill-factors realized to maximize efficiency / sensor capacitance:
 - Implant widths of 30 um (std. design), 25 um, 20 um, 15 um
- DC coupled pixels, no biasing structures
- Bump-bonded to RD53A R/O chip
- Measured at different irradiation steps
 - 5 x 10¹⁵ n_{eq}/cm², **1 x 10¹⁶ n_{eq}/cm²**

[DOI: 10.1016/j.nima.2020.164130]

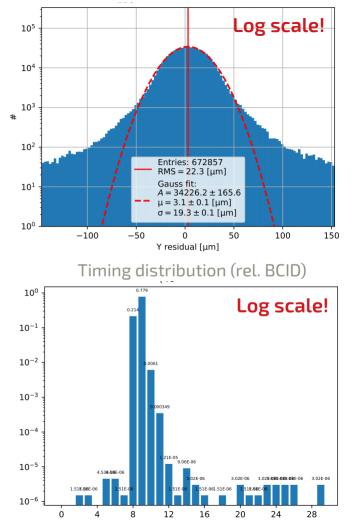
• Average ENC (before irradiation): ~ 75 $e \rightarrow$ comparable to other planar sensors


* Measured at -17 °C


- No difference across different pixel designs in terms of noise
 - → Although, pixel cap. is different (C_{NW30} ~25 fF) [H. Krüger, E. Kimmerle, <u>Pixel Capacitance Measurement</u>]
- After $1 \times 10^{16} n_{eq}/cm^2$: ENC increased to ~100 e (but also higher leakage current + noise of FE included)

TESTBEAM SETUP

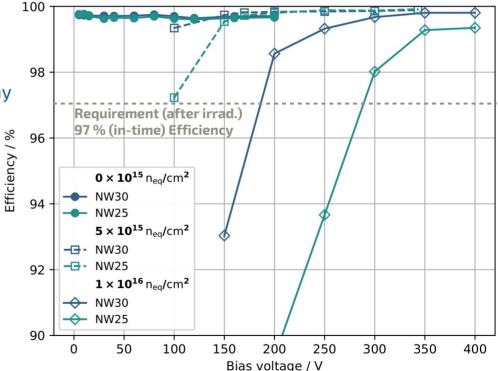
- Testbeam done at DESY
 - Perpendicular, 5 GeV electron beam
 - Trigger rate: 3 5 kHz
- DUT measured in cooling box:
 - Controllable, stable temperature (ΔT ~ 1 °C)
 - Temperature: -15 °C (NTC on R/O chip)
- DUT read out using BDAQ53 R/O system [10.1016/j.nima.2020.164721]



TRACK RECONSTRUCTION

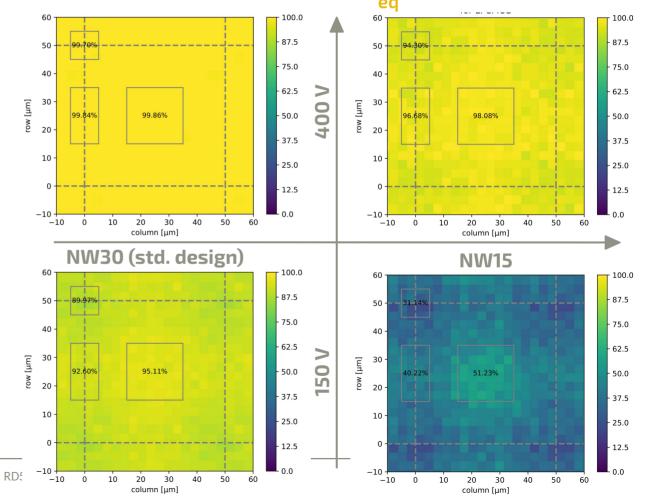
- Testbeam data reconstructed with BTA: https://github.com/SiLab-Bonn/beam_telescope_analysis
- Kalman Filter algorithm used for tracking (unbiased)
- Search radius for efficiency calculation: 200 um
- Alignment: Good
 - Small tails due to multiple scattering in cooling box
- Timing: Good
 - Almost every hit is "in-time"
 - \rightarrow No noise hits included in analysis!

(Unbiased) Residual distribution in y-dir. (for DUT)

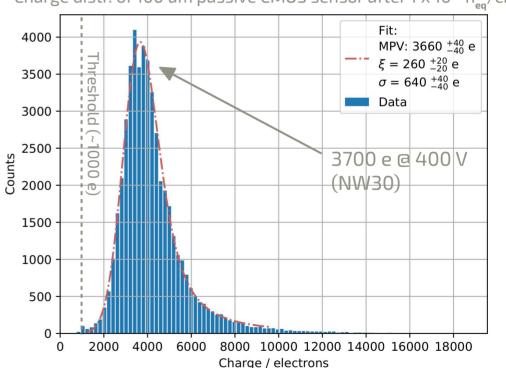


EFFICIENCY MEASUREMENT

- DUT operation conditions:
 - Threshold: ~ 1000 e
 - Noise occupancy: < 10⁻⁶
 - Bias voltage > 400 V not possible due to too many noisy pixels
- Before irradiation:
 - Fully efficient (> 99.5 %) at 5 V only
- After irradiation:
 - 5 x 10¹⁵ n_{eq}/cm²: > 99 % efficiency (@ 100V only)
 - 1 x 10¹⁶ n_{eq}/cm²: > 99 % efficiency (@ 400V)
- Reminder: NW30 is std. design

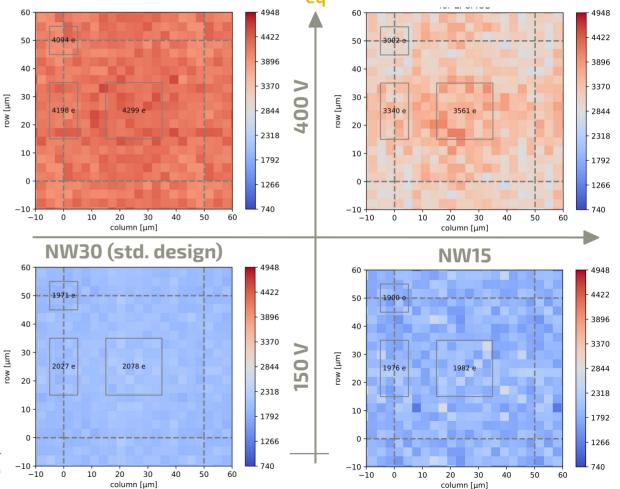

Hit-detection efficiency of 100 um passive CMOS sensor

IN-PIXEL EFFICIENCY @ 1 x 10¹⁶ n_{eq}/cm²

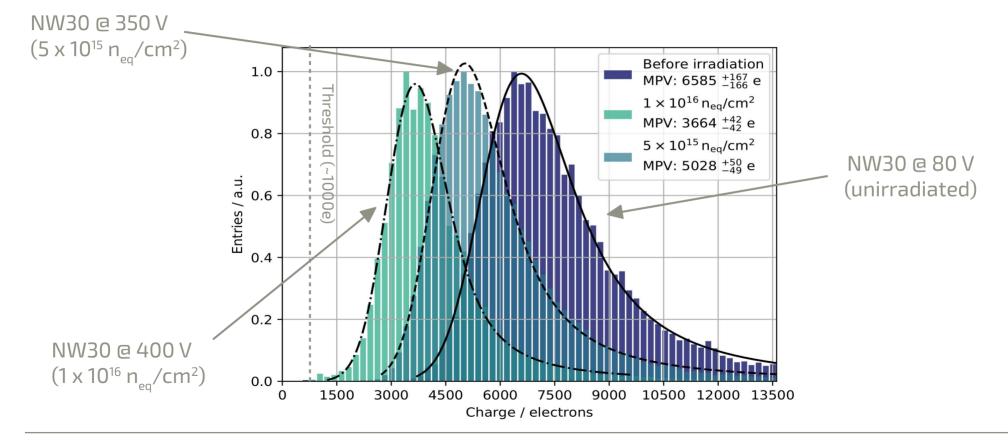

- High bias voltage + large n-implants
 - Homogeneous efficiency within pixels
- Flavors with small n-implants:
 - Efficiency loss at pixel corners (especially for low bias voltage)
 - → Due to low electric field and charge sharing

CHARGE MEASUREMENT

- Charge measurement:
 - Sampling of HitOr with external clock (640 MHz) \rightarrow Length proportional to amount of charge
 - Better charge resolution than TOT
- Assumption: Charge calibration unchanged after irradiation
- Only single-hit events considered for analysis

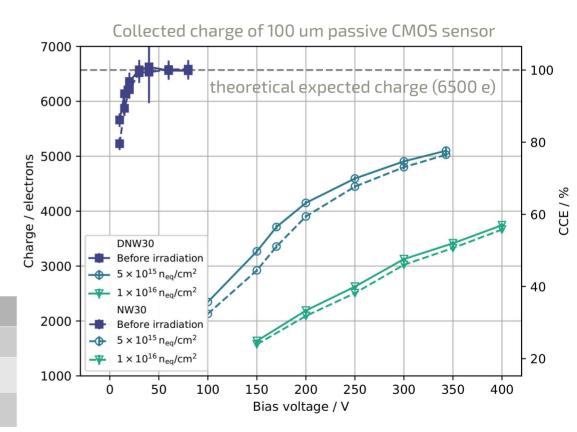

Charge distr. of 100 um passive CMOS sensor after $1 \times 10^{16} n_{10}/cm^2$

IN-PIXEL CHARGE @ $1 \times 10^{16} n_{ea}^{2}/cm^{2}$


- High bias voltage + large n-implants
 - Homogeneous charge within pixels
- Flavors with small n-implants:
 - Low charge at pixel corners
 - \rightarrow Due to low electric field and thus, more charge trapping
 - \rightarrow Explains efficiency loss
- Amount of charge increases with bias voltage and n-implant size
- @ 150 V: Threshold cuts into Landau
 - \rightarrow No reliable estimation of mean charge

RD5

CHARGE: UNIRRADIATED VS IRRADIATED



CHARGE VS BIAS VOLTAGE

- Expected charge from MIP (using GEANT4)
 - 73 e/h-pairs per um
 - Before irradiation: 6500 e
 - \rightarrow 90 um Si (100 um thick incl. metal layers)
- Charge-collection efficiency (CCE):

 $CCE = \frac{\text{theoretical exp. charge}}{\text{measured charge}}$

	Charge MPV / e	CCE / %
Before irradiation	~ 6500	100
5 x 10 ¹⁵ n _{eq} /cm ²	~ 5000	~ 80
$1 \times 10^{16} n_{eq}^{2}$	~ 3700	~ 60

FULL-SIZE SUBMISSION FOR ATLAS ITK

FULL-SIZE SUBMISSION FOR ATLAS ITK

• Frontside process: Reticle stitching for large sensors

Wafer layout

- Wafers received backside processing
- 150 um thick Float-Zone wafers instead of Czochralski wafers

• Not only pixel sensors, also strip sensors: <u>Talk by Jan Cedric Honig</u>

Work done with: A. Macchiolo, D. Münstermann, M. Backhaus

UNIVERSITÄT BONN

IV-CURVES: FULL-SIZE ATLAS ITK SENSORS

- Had issue with backside processing leading to increase of current when depletion zone touches the backside
- Solved by increasing the implant-dose of backside implant: • 10^{0} Keeps depletion zone away from damaged silicon at 0.75 uA/cm2backside Sensor requirements: Current / uA/cm2 V_{dep} ~ 30V (< 100V, for 150 um) I_{leak} < 0.75 uA/cm² @ 80V (V_{dep} + 50 V) 10^{-2} V_{break} ~ 200-180 V (> V_{dep} + 70 V) → Sensors fulfill specifications Measurements on irradiated samples will be performed soon 25 50 75 100 Voltage / V

Example IV-curve

125

150

175

S5

200

CONCLUSION / OUTLOOK

- Small LF prototype sensor functional and usable after irradiation to **1 x 10¹⁶ n**_{ea}/cm²
- NW30 (std. desgin) after 1 x $10^{16} n_{eq}^{2}$ / cm²:
 - @400 V: > 99 % efficiency, 3700 e charge signal
 - → Fulfills requirement of > 97 % efficiency after irradiation
 - \rightarrow ~60 % charge-collection efficiency after irradiation
- Nice demonstration that passive CMOS sensors are radiation hard (up to **1 x 10¹⁶ n**_{eo}/cm²)!
- ATLAS-ITk full-size submission:
 - Current increase at full-depletion could be mitigated by increasing the implant dose of the backside implant!
 - Reticle stichting works and first measurements show that sensors fulfill requirements
 - Measurements on irradiated samples will be performed soon