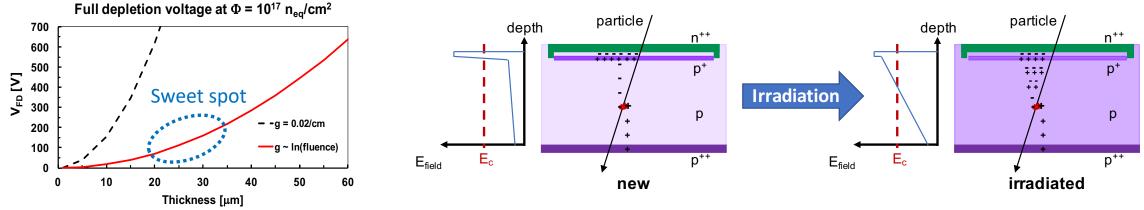

First results from thin silicon sensors for extreme fluences

V. Sola, R. Arcidiacono, G. Borghi, M. Boscardin, N. Cartiglia, M. Ferrero, F. Ficorella, S. Giordanengo, M. Mandurrino, L. Menzio, M. Milanesio, E. Monteil, G. Paternoster, F. Siviero, M. Tornago

The 37th RD50 Workshop – Zagreb Online Workshop – 18-20.11.2020

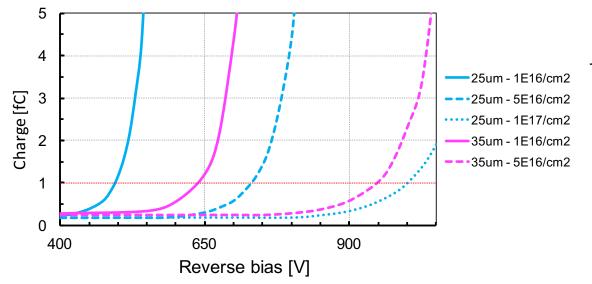

Silicon Sensors for Extreme Fluences

eXFlu – INFN grant for Young Researchers (project duration: 2 years) Presented at TREDI2020 [http://indico.cern.ch/event/813597/contributions/3727861/]

eXFlu goals:

- ightarrow study radiation damage in the fluence region $1 10.10^{16} n_{eq}/cm^2$
- ightarrow design silicon sensors able to efficiently operate up to 1.10^{17} n_{eq}/cm²

The idea: use thin LGAD sensors (20 – 35 μ m thick) to provide 1 fC of charge


▷ when new, internal signal multiplication from the gain layer

▷ with radiation, signal multiplication progressively moves from gain layer to bulk region

More details available at l.infn.it/exflu

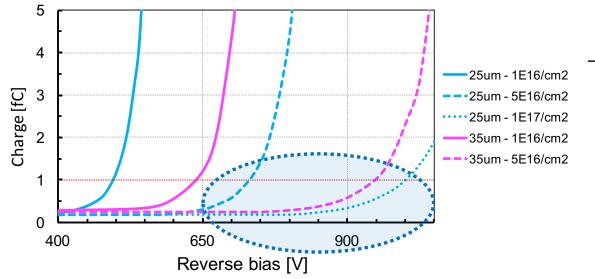
PREDICTIONS

Collected charge from irradiated LGAD - WF2

\rightarrow Thinner sensors provide higher gain after irradiation

Predictions from Weightfield2 using Massey model for 25 and 35 µm thick sensors, designed as W5 & W6 UFSD3.2 [WF2, l.infn.it/wf2]

Work in progress with the Perugia group [T. Croci, A. Morozzi, F. Moscatelli, D. Passeri] to simulate thin LGAD behaviour up to extreme fluences


Perugia model precisely describes behaviour of thin n-in-p sensors up to 1E16 n_{eq}/cm^2

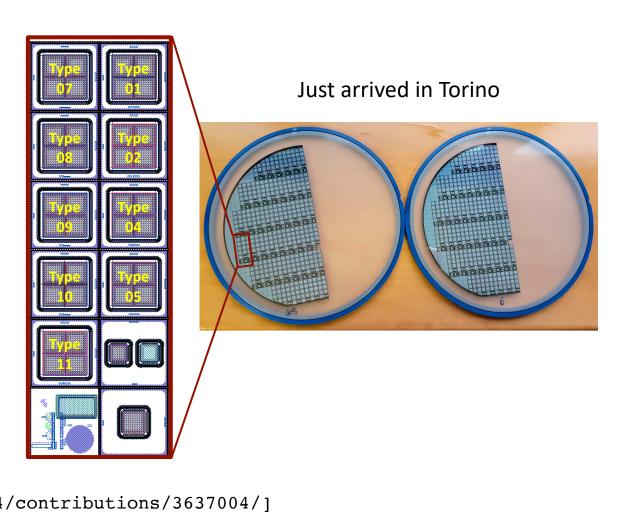
[A. Morozzi et al., doi:10.22323/1.373.0050]

 \rightarrow Does it predict thin LGAD performances up to 1E17 n_{eq}/cm² ?

PREDICTIONS

Collected charge from irradiated LGAD - WF2

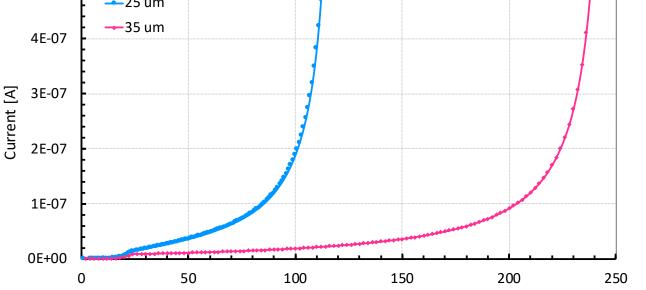
\rightarrow Thinner sensors provide higher gain after irradiation


Predictions from Weightfield2 using Massey model for 25 and 35 µm thick sensors, designed as W5 & W6 UFSD3.2 [WF2, l.infn.it/wf2]

Data above 1E16 n_{eq} /cm² suggest some optimism:

- ▷ I. Mandic et al., TREDI 2020
- ▷ J. Vaitkus et al., this Workshop

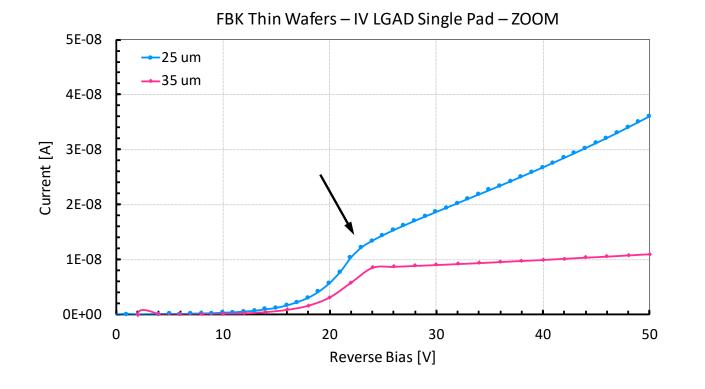
 \rightarrow To get the target charge, we need to operate extreme irradiated thin sensors at V_{bias} ~ 700 – 900 V


F	Water#	Thickness 45	Depth Standard	Dose Pgain 0.98	Carbon A	Diffusion CHBL	OM	FB	<
	2	45	Standard	0.98	A spray	CHBL			
	3	45	Standard	0.98	0.8A	CHBL			_
	Wafer #	Thickness	Depth	Dose Pgain	Carbon	Diffusion			a \
	5	25	Standard	0.94	Α	CHBL			
	B	3 5	Standard	0.94	Α	CHBL			3
	3	45	Standard	0.98	0.8A	CHBL			
	8	45	St peda rd	0.98	0 ,4 A	CHERL			IJ
	2 t y in v	waf eg s ha	SEDECER	produced	lat ⊾ BK	CHBBL			
	(w <u>i</u> tchin	UF 3 , 3.2	SDBGG JIG	tion d,96	0 .6 A	CHBL	1 	3	
	1/1	. 45	Stpedard	0.98	Α	CHERL			
		axial subs	strates Deep	0.74	Α	CBL			
	⊳ 19 8 dif	fer e⁴⁵t wa	afe Peen ic	kne 8s: 25	an tes 5	un ÇBL			4
	19	45	Deep	0.74	0, 6 A	CBH	T III	Der	
	🖻 🔒 dif	fere g t in	te paq d s	stra teg ies	(ty p es)	CBH			2
	16	45	Deep	0.74	0 . 6A	CBH			
	13	45	Deep	0.74	0.6A	CBH			
	1 8	45	Deep	0.78	Α	СВН			
	19	45	Deep	0.78	0. 6 A	СВН	004/		- 1262
	[Ref 10 16	or types: 45	Deep	0.78 /indico.ce 0.74	0.6A	CBH	9994/CONTI	IDUTION	5/303
	17	45	Deep	0.74		CBH			
V. Sola	18	45	Deep	0.78 The	37th <mark>A</mark> RD5	0 W OB Bhop	– Zagreb Onl	ine – 19.11.	2020

V. Sola

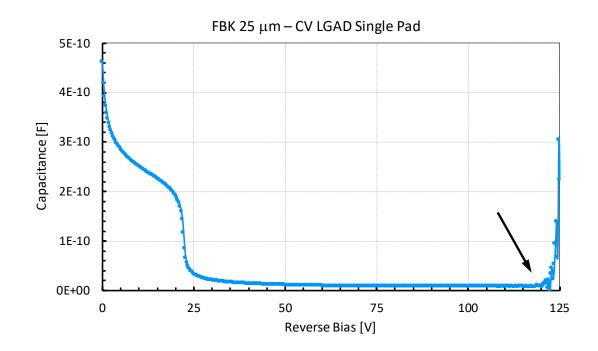
5E-07 FBK Thin Wafers – IV LGAD Single Pad

IV ON THIN LGAD

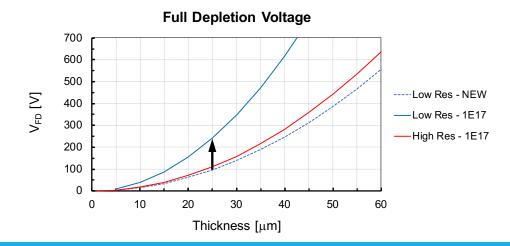


Reverse Bias [V]

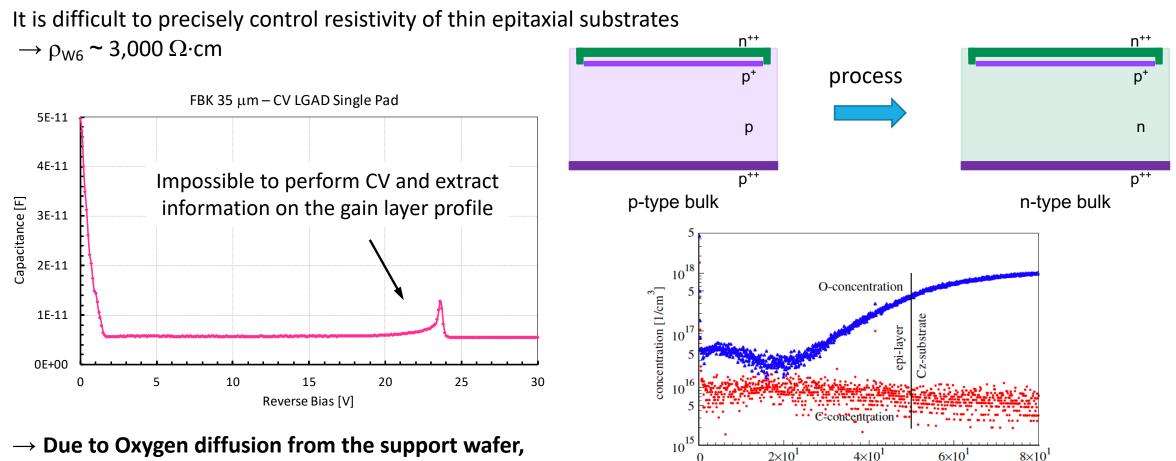
- ► Good electrical behaviour
- ► Dark current increase due to internal gain
- On thinner sensors, the same reverse bias trigger a higher gain
- Gain layer design is the same for both thicknesses


IV ON THIN LGAD – ZOOM

- ► Good electrical behaviour
- ► Dark current increase due to internal gain
- On thinner sensors, the same reverse bias trigger a higher gain
- Gain layer design is the same for both thicknesses
 - \rightarrow Gain layer depletion at ~ 22 V


CV ON 25 μ m WAFER – Low ρ

It is difficult to precisely control resistivity of thin epitaxial substrates $\rightarrow \rho_{W5} \sim 75 \ \Omega \cdot cm$


V_{GL} depletion ~ 22 V V_{bulk} depletion ~ 95 V Sensor depletion ~ 120 V Gain at 120 V ~ 25 Gain at 130 V ~ 40 n** p* p p++

 \rightarrow Thanks to saturation V $_{\text{FD}}$ of bulk does not increase dramatically with radiation

CV ON 35 μ m WAFER – High ρ

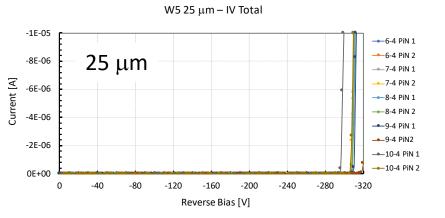
the active substrate undergo type inversion

[I. Pintilie et al. (2005) doi:10.1016/j.nima.2005.10.013]

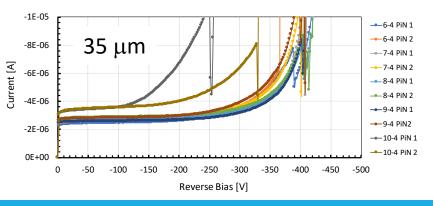
depth [µm]

CV ON 35 μ m WAFER – High ρ

the active substrate undergo type inversion

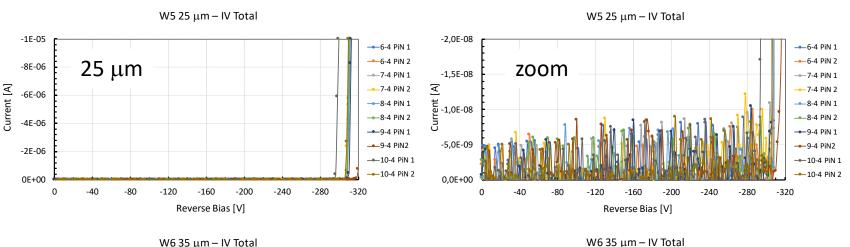


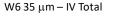
It is difficult to precisely control resistivity of thin epitaxial substrates n+. n++ $\rightarrow \rho_{W6} \sim 3,000 \ \Omega \cdot cm$ p^+ process n⁺ FBK 35 μm – CV LGAD Single Pad 5E-11 р n 4E-11 p++ p** Impossible to perform CV and extract p-type bulk n-type bulk Capacitance [F] information on the gain layer profile 3E-11 2E-11 10^{18} O-concentration concentration [1/cm³] 1E-11 10^{1} 0E+00 10 15 20 25 30 0 5 10 Reverse Bias [V] C-concentration \rightarrow Due to Oxygen diffusion from the support wafer, 10 4×10^{1} 2×10^{1} 8×10^{1} 6×10^{1}

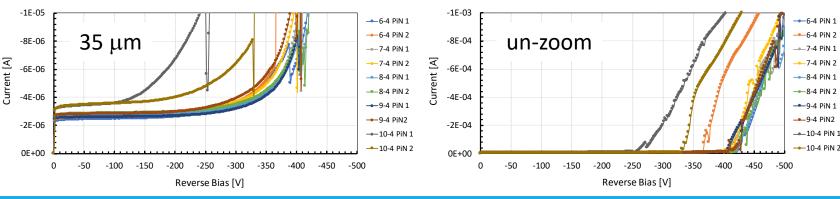

[I. Pintilie et al. (2005) doi:10.1016/j.nima.2005.10.013]

depth [µm]

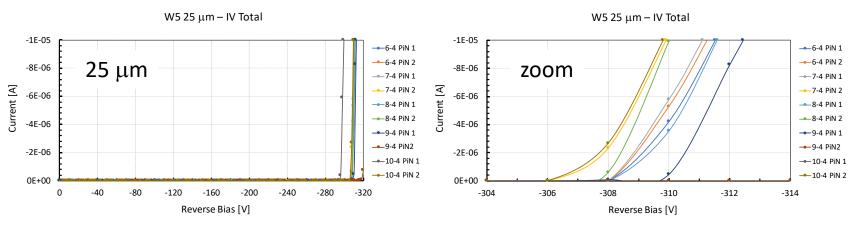
On UFSD3.2 wafers, there is a row with no gain layer implantation The breakdown has been studied on 5 PiN-PiN structures

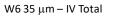


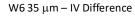

W6 35 µm – IV Total

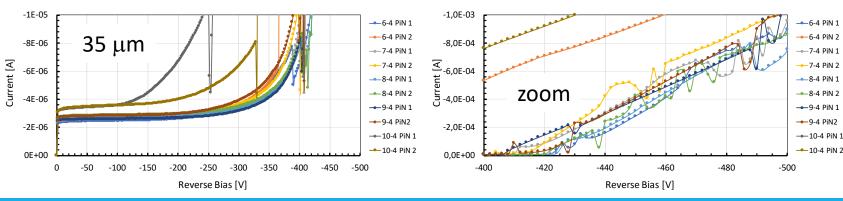


On UFSD3.2 wafers, there is a row with no gain layer implantation The breakdown has been studied on 5 PiN-PiN structures

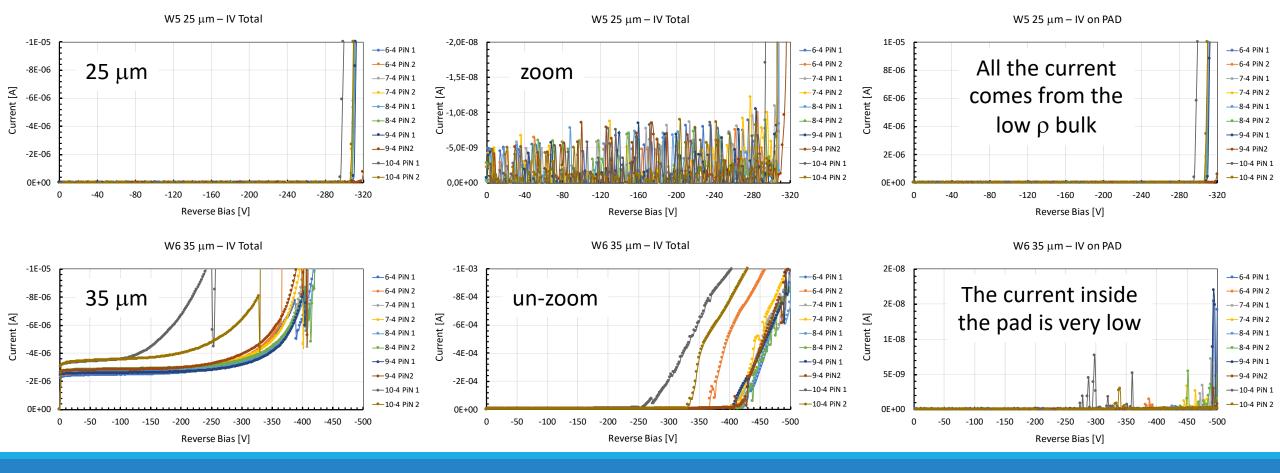




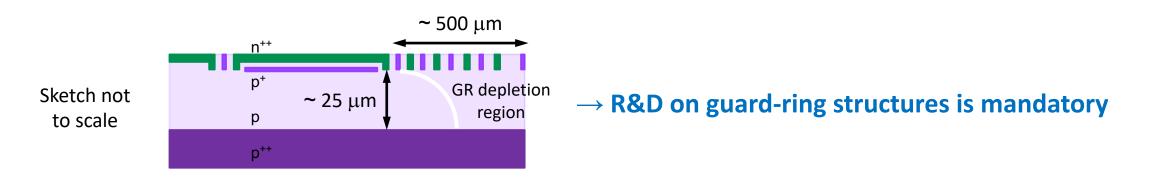



The 37th RD50 Workshop – Zagreb Online – 19.11.2020

On UFSD3.2 wafers, there is a row with no gain layer implantation The breakdown has been studied on 5 PiN-PiN structures



The 37th RD50 Workshop – Zagreb Online – 19.11.2020



On UFSD3.2 wafers, there is a row with no gain layer implantation

The breakdown has been studied on 5 PiN-PiN structures

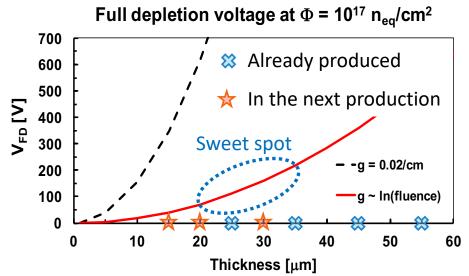
GUARD-RING DESIGN FOR THIN SENSORS

For UFSD3.2 PiN sensors, before irradiation $V_{BD} > 500 V$

When new, V_{BD} on PiN occurs at a higher bias than V_{BD} due to gain and do not limit sensor operation

 \rightarrow UFSD3.2 guard rings work nicely before irradiation

Once irradiated at 1E17 n_{eq}/cm^2 , guard rings need to sustain ~ 800 V over a thickness of ~ 25 μ m \rightarrow Is it possible?


Guard-ring needs a new design for extreme irradiated thin substrates:

- \triangleright How many rings do we need on ~ 25 μ m thick structures?
- ► How far should be the pad from the physical sensor edge?

NEXT STEPS

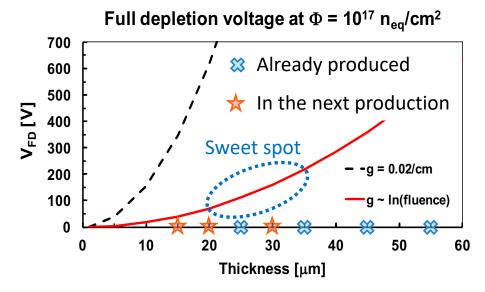
- Irradiate thin UFSD3.2 sensors up to 1E17 n_{eq}/cm² and measure the irradiation effects on thin substrates
- Optimise the gain-layer and guard-ring design for the next thin wafer production
 - 15, 20, and 30 μm thick epitaxial wafers in production
 - \rightarrow 15 & 20 μm thick substrate requested ρ = 75 $\Omega{\cdot}cm$
 - \rightarrow 30 μm substrate requested ρ > 200 $\Omega \cdot cm$ (intrinsic)

The 37th RD50 Workshop – Zagreb Online – 19.11.2020

Thank you for your attention

Thank you for your attention

17


Optimise the gain-layer and guard-ring design \triangleright for the next thin wafer production

15, 20, and 30 μ m thick epitaxial wafers in production

 \rightarrow 15 & 20 μ m thick substrate requested ρ = 75 Ω ·cm

 \rightarrow 30 µm substrate requested ρ > 200 Ω ·cm (intrinsic)

Irradiate thin UFSD3.2 sensors up to 1E17 n_{ea}/cm^2 and measure the irradiation effects on thin substrates

NEXT STEPS

 \triangleright

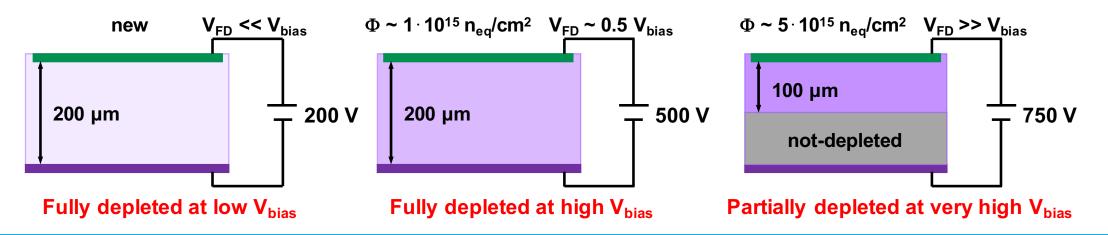
ACKNOWLEDGEMENTS

We kindly acknowledge the following funding agencies, collaborations:

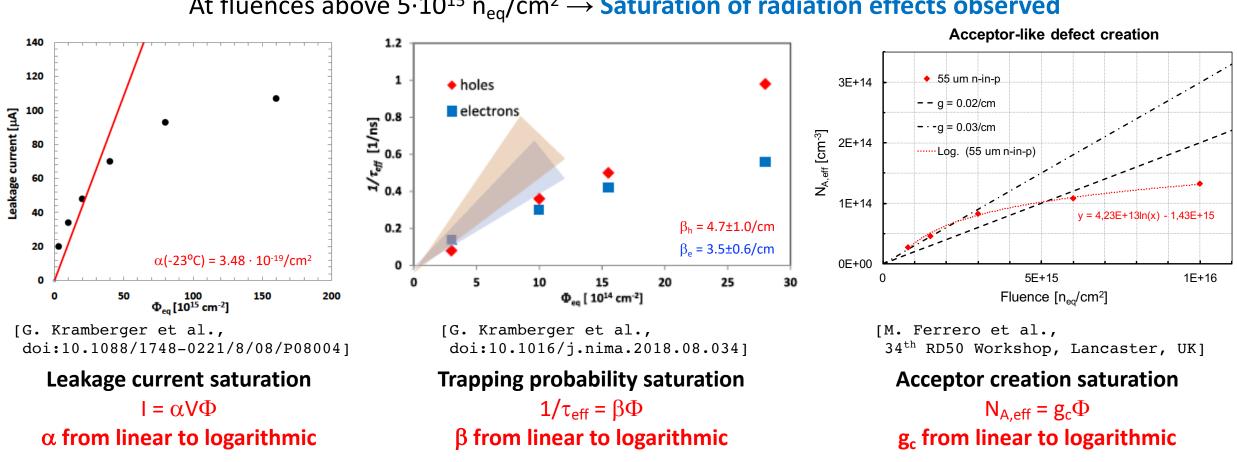
- ⊳ RD50, CERN
- ▷ Horizon 2020, grant UFSD669529
- ▷ AIDA-2020, grant agreement no. 654168
- ▷ MIUR, Dipartimenti di Eccellenza (ex L. 232/2016, art. 1, cc. 314, 337)
- ▷ Ministero della Ricerca, Italia, PRIN 2017, progetto 2017L2XKTJ 4DinSiDe
- ▷ Ministero della Ricerca, Italia, FARE, R165xr8frt_fare
- ▷ INFN CSN5

BACKUP

V. Sola


THE 37TH RD50 WORKSHOP – ZAGREB ONLINE – 19.11.2020

EFFECTS OF RADIATION ON SILICON SENSORS


Irradiation results in 3 main effects:

- ► Decrease of the collected charge due to trapping effects
- Increase of the dark current
- ► Change in effective doping
 - \rightarrow increase of the reverse bias to operate the sensor
 - \rightarrow distortion of the electric field inside the sensor

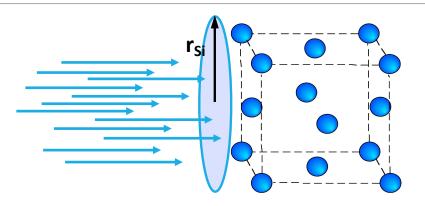
Irradiation models developed in the fluence range $10^{14} - 10^{15} n_{eq}/cm^2$ predict standard silicon detectors (~ 200 µm) are almost impossible to operate

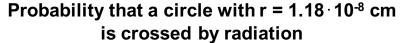
SOME OPTIMISM – SATURATION

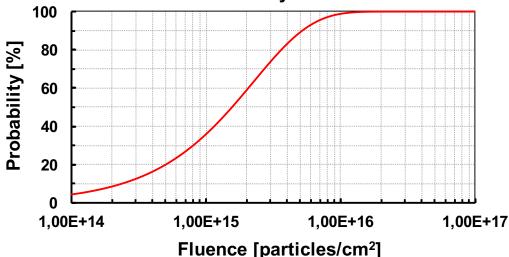
At fluences above $5 \cdot 10^{15} n_{eq}/cm^2 \rightarrow$ Saturation of radiation effects observed

Silicon detectors irradiated at fluences $10^{16} - 10^{17} n_{eq}/cm^2$ do not behave as expected \rightarrow They behave better

WHY SATURATION?


Possible explanation:


The distance between two atoms, the so-called Silicon radius, is $r_{si} = 1.18 \cdot 10^{-8} \text{ cm}$


The probability that a circle of radius r_{Si} has been crossed by a particle becomes 1 at 10¹⁶ particles/cm²

Above 10¹⁶ particles/cm²:

damage happening on already damaged Silicon might be different

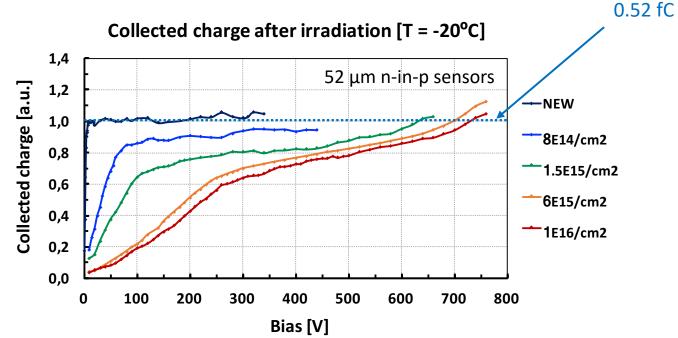
GO THIN

Full depletion voltage at $\Phi = 10^{17} n_{eq}/cm^2$ $V_{FD} = e |N_{eff}| d^2/2\varepsilon$ 700 600 500 V_{FD} [V] 400 **Reduce thickness** Saturation Sweet spot 300 - -q = 0.02/cm200 Thanks to saturation effects, thin sensors q ~ In(fluence) 100 Λ can still be depleted and operated at V_{bias} ≤ 500 V 20 30 50 10 40 60 Thickness [µm]

What does it happen to a 25 μ m sensor after a fluence of 5.10¹⁶ n_{eq}/cm²?

- ► It can still be depleted
- ► Trapping is almost absent
- Dark current is low (small volume)

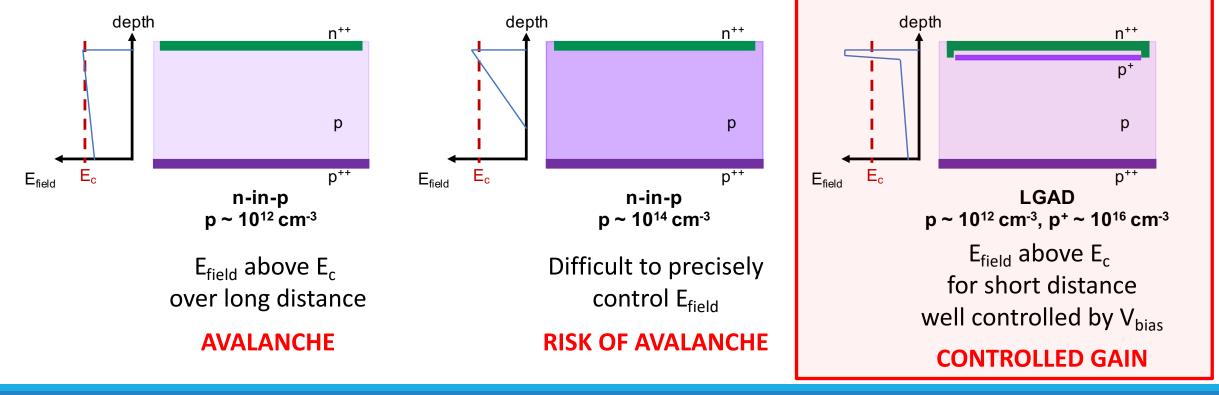
However: charge deposited by a MIP ~ 0.25 fC


- \rightarrow This charge is lower than the minimum charge requested by the electronics (~ 1 fC)
- \rightarrow Need a gain of at least ~ 5 in order to provide enough charge

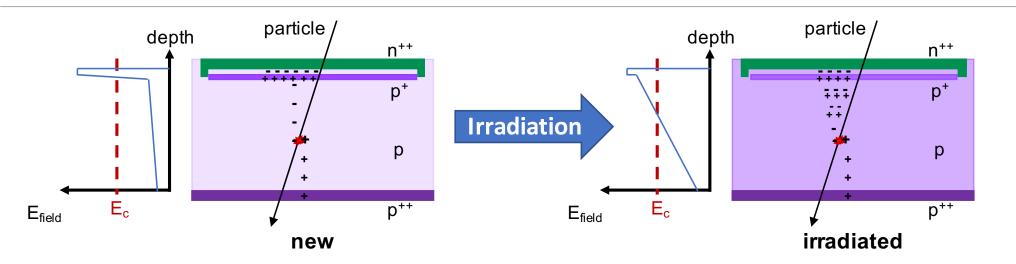
HOW THIN?

To efficiently record a hit, electronics require al least 1 fC

MPV charge from a MIP crossing silicon ~ 75 e-h/ μ m 52 μ m thick \rightarrow 0.52 fC 25 μ m thick \rightarrow 0.25 fC

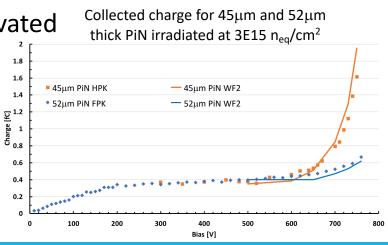

SENSOR CHOICE

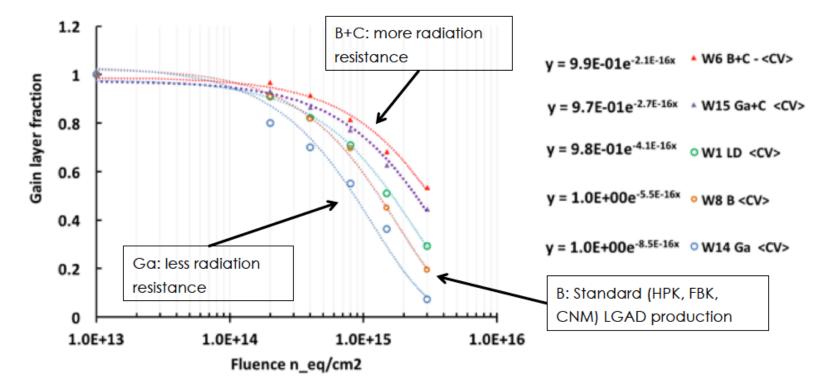
Impact ionisation occurs when $E_{field} > E_c = 250 \text{ kV/cm}$


 \rightarrow How to get internal multiplication of 5-10? Stable gain if:

1) $E_{field} > E_{c}$ for a short distance

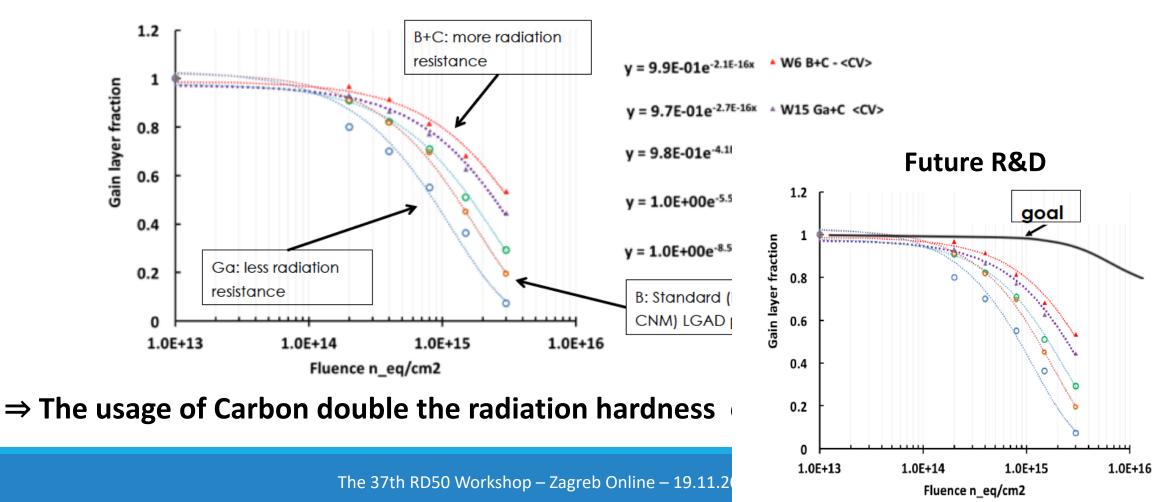
2) This length is controlled by applied V_{bias}


IRRADIATED LGAD


► Start with a thin LGAD, 20 – 35 µm thick (to be optimized)

- ▷ 2·10¹⁵ 5·10¹⁵ n_{eq}/cm²: with increasing fluence, the gain layer is deactivated
- 5.10¹⁵ 10¹⁶ n_{eq}/cm²: compensate the decrease power of the gain layer by shifting the multiplication region to the bulk
- ► 10¹⁶ 10¹⁷ n_{eq}/cm²: rely solely on bulk multiplication

 \rightarrow Does bulk multiplication exist at these fluences?

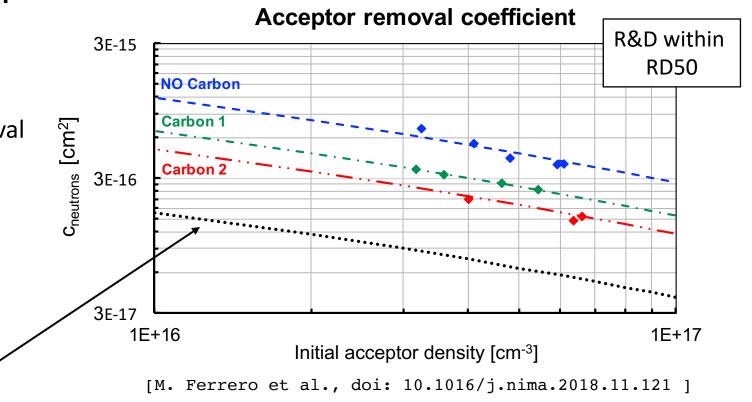


UFSD suffer for gain reduction due to irradiation FBK used both Boron and Gallium as gain layer dopant, and added Carbon in the gain layer volume

 \Rightarrow The usage of Carbon double the radiation hardness of UFSD

UFSD suffer for gain reduction due to irradiation FBK used both Boron and Gallium as gain layer dopant, and added Carbon in the gain layer volume

Possible?

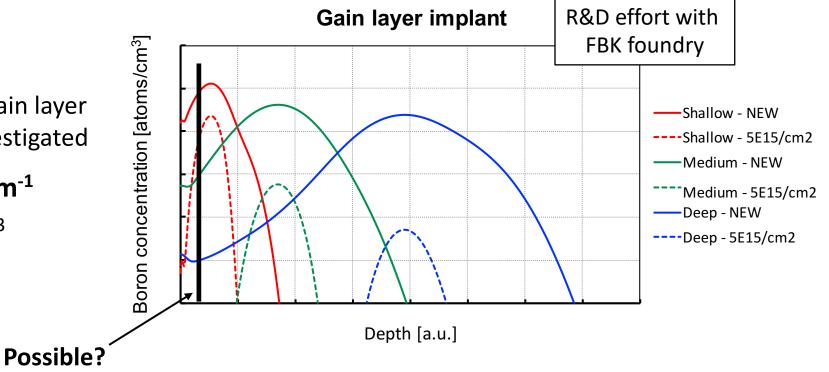

Goal: retard multiplication transition from the gain layer to the bulk region

Acceptor removal:

$$N_{A,eff} = N_{A,0} \cdot e^{c\Phi}$$

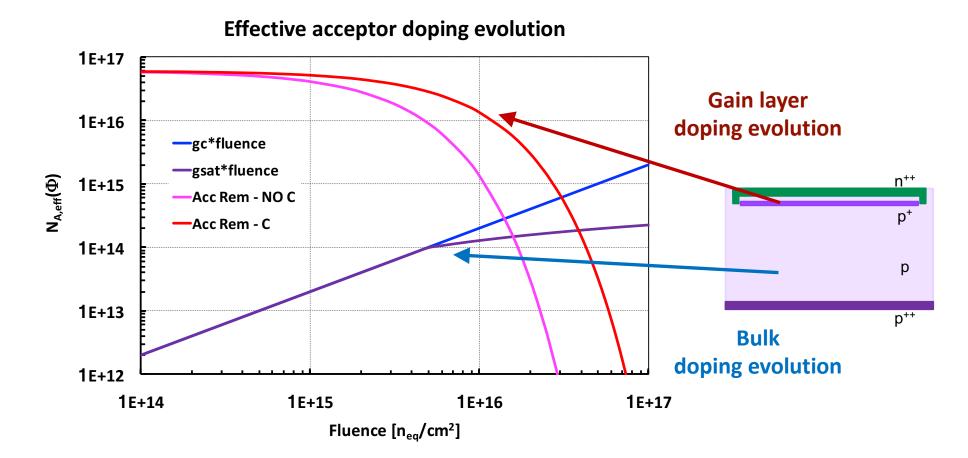
Adding carbon protects boron from removal Different carbon concentrations have different impact on boron protection

 \rightarrow Gain layer engineering to extend its contribution to 5.10¹⁶ n_{eq}/cm²


Goal: retard multiplication transition from the gain layer to the bulk region

Acceptor removal:

$$N_{A,eff} = N_{A,0} \cdot e^{c\Phi}$$


Defect engineering and different gain layer implantation strategies will be investigated

$$\mathbf{c} \cdot \mathbf{N}_{A,0} = \mathbf{60} \ \mathbf{cm}^{-1} \rightarrow \mathbf{< 10} \ \mathbf{cm}^{-1}$$

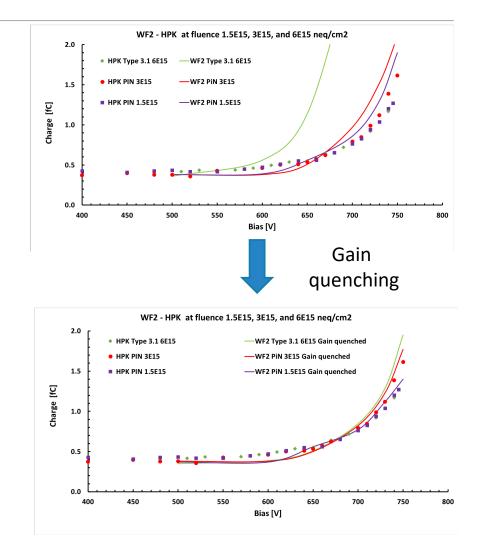
for $N_{A,0} = 10^{17} \ \mathrm{atoms/cm^{3}}$

ACCEPTOR DOPING EVOLUTION WITH Φ

 $N_{A,eff}(\Phi) = g_c \cdot \Phi + N_A(0) \cdot e^{-c \cdot \Phi}$

The 37th RD50 Workshop – Zagreb Online – 19.11.2020

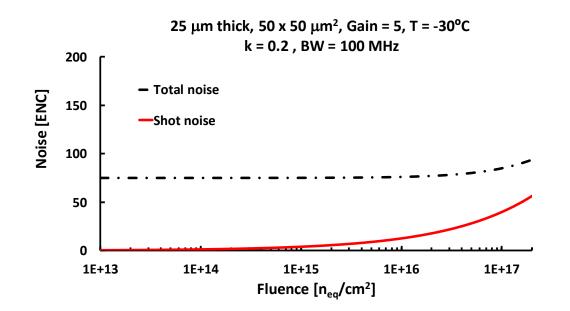
GAIN SIMULATION ON THIN PIN


To nicely reproduce data, a quenching factor on bulk gain need to be introduced (Massey model is used)

$$G \propto e^{lpha(E,T)*d}$$

 $lpha \propto e^{-(a+b*T+c*\emptyset)/E}$

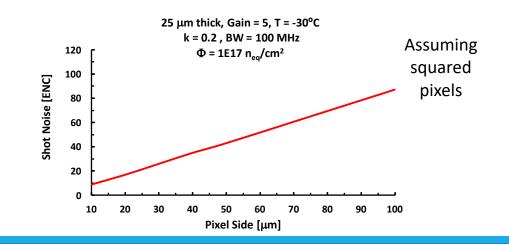
Using data on charge multiplication in PiN and the measured bulk doping, a value of c can be determined


 $c = 2 * 10^{-11} V/\emptyset$

[N. Cartiglia, https://indico.cern.ch/event/ 812761/contributions/3459057]

SHOT NOISE

It is crucial to study the interplay between irradiated thin sensors and the electronics

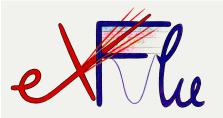

Shot noise is compared to RD53 chip performances [https://rd53.web.cern.ch/]

 \rightarrow To further reduce the shot noise it is possible to decrease the detector operating temperature and the pixel size

For LGAD sensors, shot noise is given by

$$\sigma_{shot} = \sqrt{2q(I_{surface} + I_{bulk}G^2F)\Delta f}$$

G = gain F ~ G^x = excess noise factor (0 < x < 1) Δf = bandwidth interval


INFN awarded for funding the *Silicon Sensor for Extreme Fluences (eXFlu)* project^[*] to develop, produce, irradiate and study thin silicon sensors (V. Sola as PI)

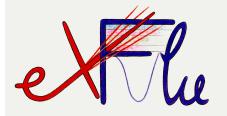
The eXFlu project aims to

- \rightarrow Optimise the design of thin silicon sensors
- \rightarrow Measure the onset and the magnitude of saturation effects in thin sensors
- \rightarrow Map the shift of multiplication from the gain layer to the bulk
- → Study the signal multiplication mechanism in highly irradiated sensors does it disappear at very high fluences?
- \rightarrow Collaborate with colleagues to extend radiation damage models (RD50, Perugia, ...)

^[*] Award funding for one over six projects presented by young researchers in the fields of research and technological development carried out by the Institute (Announcement No.21188)

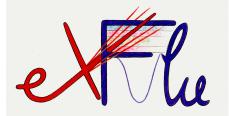
eXFlu IN A GLANCE

Involved institutes:


INFN Torino and FBK

Work Packages:

WP1: sensor simulation and design
WP2: sensor production
WP3: irradiation (n, p, π ...)
WP4: laboratory characterisation and signal analysis
WP5: beam test

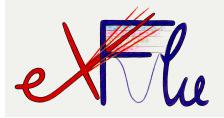

▷ Total budget:

~ 130k euro

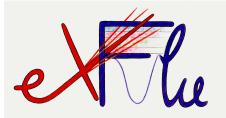
- ▶ Measure silicon properties in an unexplored region of radiation fluences
- Study of saturation of radiation effects in thin silicon sensors
- Understanding of impact ionisation mechanism in highly irradiated sensors
- ▷ Contribute to building models for very irradiates silicon detectors
- ⇒ The ultimate goal is to pave the way for the design of silicon sensors able to efficiently record charged particles up to 10¹⁷ n_{eq}/cm² and beyond

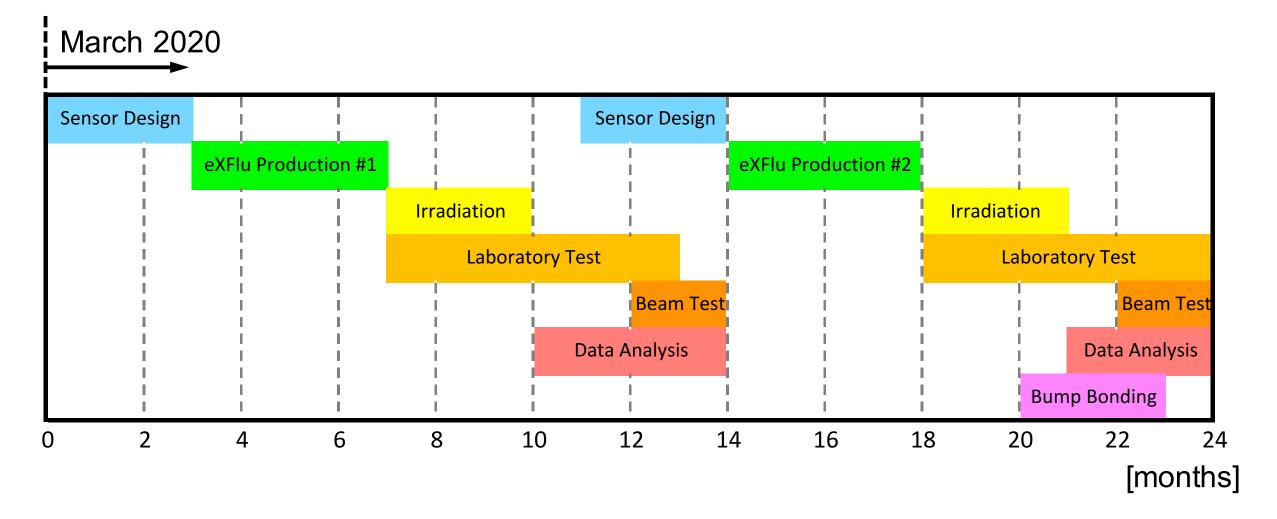
eXFlu TEAM

The eXFlu project consists of 2 Research Units: one centered on the sensor design, irradiation and test (INFN – Torino) while the other on the sensor fabrication (FBK)


> INFN, Torino

- Valentina Sola (PI), particle physicist expert both in data analysis and detector R&D, involved in the development and characterisation of Ultra-Fast Silicon Detectors, actively participating to laboratory and beam tests, organisation of irradiation campaign, and supervision of students
- Simona Giordanengo, researcher at INFN Torino; Ennio Monteil, technician at the Physics Department of the University of Torino; Marta Tornago, Ph.D. student at Torino University

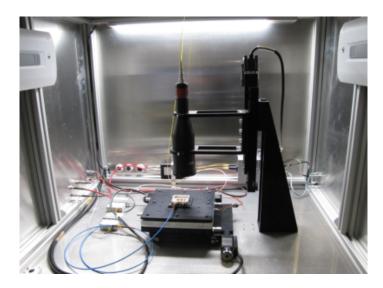

> FBK, Trento


- Maurizio Boscardin, senior researcher at Fondazione Bruno Kessler in Trento; Giacomo Borghi, researcher at Fondazione Bruno Kessler in Trento
- \rightarrow The team includes a diverse composition of expertise, well fitted to the project
- \rightarrow The project can rely on a fully functional laboratory

eXFlu BUDGET TABLE

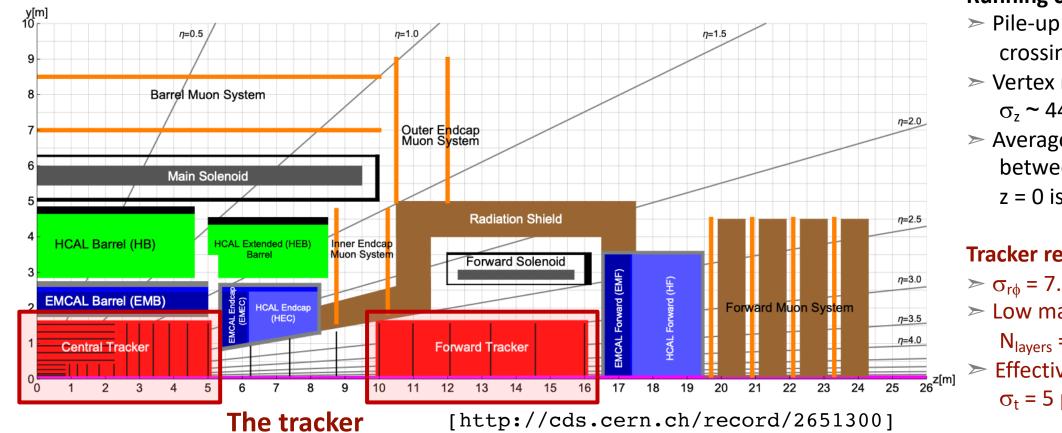
ltem	First year		Second year		Total (Euros)	
item	Cost per unit (Euros)	Units	Cost per unit (Euros)	Units	Total (Euros)	
Wafers (Epitaxial)	80	25			2.000	
Wafers (Si-Si DWB FZ)	300	20			6.000	
LGAD Production	30.000	1	30.000	1	60.000	
Chiller	30.000	1			30.000	
Irradiation	3.000		3.000		6.000	
Bump-bonding			10.000		10.000	
Read-out boards			400	10	4.000	
Travel	3.000		10.000		13.000	
Total	74.000		57.000		131.000	

COOL SYSTEMS


A key aspect of eXFlu project is to be able to perform measurement on irradiated sensors at low temperatures

 \rightarrow Preparation of cold setups in progress

MPI TS200-SE Manual Probe Station with temperature range from -40 to +300°C will arrive soon in Torino Laboratory

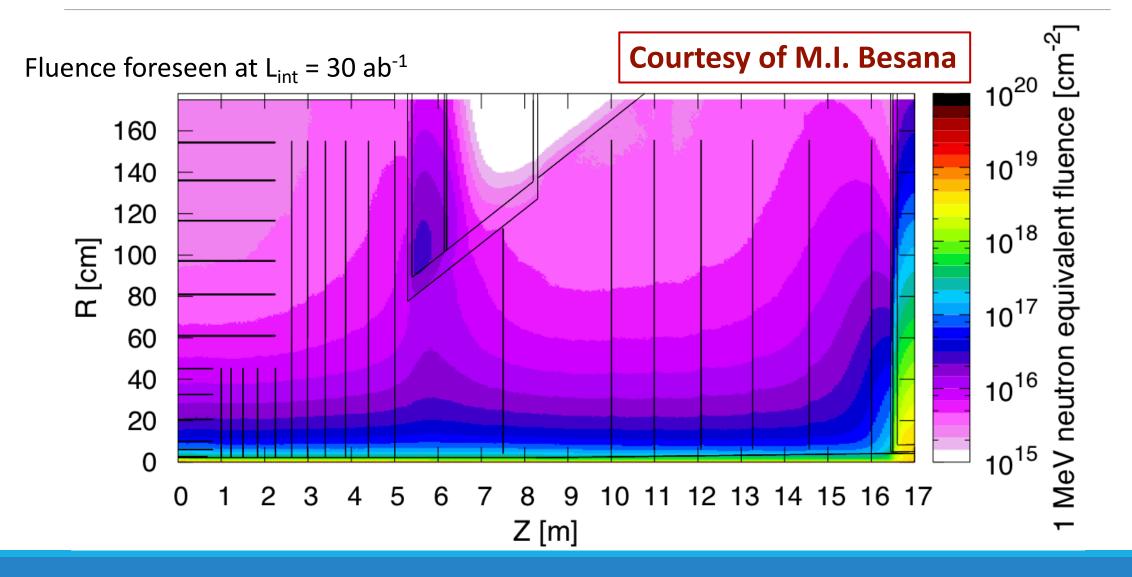


Particulars Large Scanning TCT setup connected to Lauda chiller down to -20°C available in Torino Laboratory

Vötsch VCL4010 Test Chamber with temperature range from -40 to +180°C available in Torino Laboratory

TRACKING AT FUTURE HADRON COLLIDER

Next generation high-energy and high-intensity hadronic collider \rightarrow FCC-hh


FCC-hh reference detector

Running conditions:

- Pile-up per bunch crossing ~ 1000
- > Vertex region $\sigma_z \sim 44 \text{ mm}, \sigma_t \sim 165 \text{ ps}$
- Average distance
 between vertices at
 z = 0 is 125 μm

Tracker requirements: > $\sigma_{r\phi} = 7.5 - 9.5 \mu m$ > Low material budget $N_{layers} = 12$ > Effective pile-up = 1 $\sigma_t = 5 ps$

RADIATION BUDGET - TRACKER VOLUME

