Electron, neutron and proton irradiation effects on four-quadrant SiC radiation detectors

<u>J.M. Rafí</u>¹, G. Pellegrini¹, P. Godignon¹, S. Otero Ugobono¹, G. Rius¹, V. Dauderys¹, I. Tsunoda², M. Yoneoka², K. Takakura², G. Kramberger³ and M. Moll⁴

¹ Instituto de Microelectrónica de Barcelona, CNM-CSIC, Bellaterra, Spain
 ² Kumamoto College, National Institute of Technology (KOSEN), Kumamoto, Japan
 ³ Jozef Stefan Institute, Ljubljana, Slovenia
 ⁴ European Organization for Nuclear Research (CERN), Geneva, Switzerland

18th November 2020

The 37th RD50 Workshop (Zagreb 18-20 Nov 2020, online)

4H-Silicon carbide (SiC) properties

- Wide bandgap energy (less affected by high T)
- Low leakage current (even after irradiation and room T)
- High transparency (not affected by visible light)

Institut

Ruđer

Bošković

RD50

- High saturation velocity (potential for timing applications)
- High breakdown voltage, high termal conductivity (power devices)
- High atomic displacement threshold energy (potential radiation hardness)
- Potential for fabrication of 3D detectors and other NEMS structures
- High quality SiC substrates available (up to 6-inch) (commercial applications)

CSIC

Stefan

Institute

4-quadrant diodes

Institut

Ruđer

Space applications (solar tracking systems (bulk Si))

WBG □ Dark current ♥ ("T-proof")
Transparency ↑ (visible "light-proof")
Superior radiation hardness? Diamond (cost↑ area↓ process[⊗]) SiC

CSIC

Radiation effects on SiC for detectors

- Renewed interest in radiation effects on SiC technologies for the **envisaged applications** (fusion, HEP, space, synchrotron, medical...)
- Significant number of **existing results**, some from more primitive substrates, different polytypes, different irradiation sources, mostly Schottky diode structures but also p-n junction diodes
- Important **pioneering results** from **RD50 collaboration** already described most of the radiation-induced observed effects
- The present work is an occasion to re-visit the potential of state-ofthe-art SiC material for radiation detectors

in press (early access) Electron, Neutron, and Proton Irradiation Effects on SiC Radiation Detectors

Joan Marc Rafí[®], Giulio Pellegrini, Philippe Godignon, Sofía Otero Ugobono, Gemma Rius, Isao Tsunoda, Masashi Yoneoka, Kenichiro Takakura[®], Gregor Kramberger, Member, IEEE, and Michael Moll[®]

DOI: 10.1109/TNS.2020.3029730

IEEE TRANSACTIONS ON NUCLEAR SCIENCE

The 37th RD50 Workshop (Zagreb 18-20 Nov 2020, online)

SiC, Si bulk & Si 10 μm

- Device fabrication at IMB-CNM cleanroom
- 3 substrates (same photolithographic mask set), p-on-n process
- Single + 4Q diodes + MOS capacitors (interquadrant isolation)

Irradiations and Experimental

• Unbiased irradiations (terminals left floating)

2 MeV e- @Takasaki-QST, Takasaki, Japan $\Phi = 1 \times 10^{14}$, 1×10^{15} , 1×10^{16} e/cm² NIEL hardness factor (Si-1MeV n) ~ 0.0249

Neutron @JSI TRIGA, Ljubljana, Slovenia $\Phi = 5 \times 10^{13}$, 1×10^{14} , 5×10^{14} , 1×10^{15} , 2×10^{15} , 1×10^{17} , 3×10^{17} n/cm² NIEL hardness factor (Si-1MeV n) ~ 0.9

24 GeV/c p+ @PS-IRRAD CERN, Geneva, Switzerland $\Phi = 8.6 \times 10^{13}$, 1.5×10^{14} , 1.0×10^{15} , 1.7×10^{15} , 2.5×10^{15} p/cm² NIEL hardness factor (Si-1MeV n) ~ 0.56

Electrical characterization Quadrants (except R_{interquadrant} measurements)
 I-V (low V): HP4155B Semiconductor Parameter Analyzer (triax)
 I-V (High V): Ke2410 SMU (coax) and new Ke2470 SMU (triax)
 C-V: Agilent 4284A Precision LCR meter (+coupling box when needed)

Institut

Ruđer

Bošković

Institute

SiC I-V characteristics (low V)

SiC: low I_{reverse} for all irradiation fluences (@ room T)

→ Bulk Si & 10 μ m-Si: >4-6 orders magnitude higher I_{reverse}

➡ Radiation-induced decrease in I_{forward} radiation induced defects (V_C, V_{Si}, V_C+V_{si}...) → conduction resistance↑ carrier removal/doping compensation → R_{series}↑ (unipolar Schottky) τ_{recombination} ↓ → conduction modulation drift layer↓ (bipolar p-n)

Electrical rectification character is lost for the highest fluences (1x10¹⁶ e/cm² & >1x10¹⁵ n-p/cm²) (lightly doped epi becoming intrinsic)

> The 37th RD50 Workshop (Zagreb 18-20 Nov 2020, online)

Institut

Ruđer

Bošković

RD50

Stefan

Institute

I-V reverse characteristics (low V)

SiC: low I_{reverse} → difficult extract α (perhaps ~5 orders <Si for e-irr.)
 Lower creation damage due to higher atomic displacement energies
 Lower carrier generation in created defects due to higher bandgap
 Even slight I_{reverse} decrease for highest p+ and n fluences
 (possible compensation of native defects originally responsible for I_{reverse})

The 37th RD50 Workshop (Zagreb 18-20 Nov 2020, online)

Institut

Ruđer

Bošković

RD50

SiC I-V reverse characteristics (high V)

Set-up **Ke2410 SMU coaxial** => Set-up **Ke2470 SMU triaxial** (resolution ~ 1 nA) (resolution ~ 30-50 pA)

preliminary results with Ke2470 triaxial:

CSIC

SiC: quite low I_{reverse} up to 500 V for all irradiation conditions
 A bit higher for 2 MeV e-irradiated (to be studied/experimental...?)

The 37th RD50 Workshop (Zagreb 18-20 Nov 2020, online)

Institut

Ruđer

Bošković

RD50

Stefan

Institute

SiC C-V characteristics

Institut

Ruđer

Bošković

RD50

→ Diode-like C-V only for lowest Φ ($\leq 1 \times 10^{15}$ e/cm², $< 1 \times 10^{14}$ n-p/cm²)

- Flat C-V for highest Φ (fixed C ~ 25 pF = Area·ε_{SiC}/epilayer thickness) Indicative of lightly doped n-epilayer becoming intrinsic due to compensation by radiation-induced defects
- ➡ Carrier removal rates [cm⁻¹]: 0.72 (e-), 19.8 (n), 9.3 (p+) cm⁻¹, in the range of some previous estimations for e- and n irrad. Schottky barriers

CSIC

10/15

Institute

The 37th RD50 Workshop

(Zagreb 18-20 Nov 2020, online)

Interquadrant resistance (R_{interq.})

R_{interq}. SiC > R_{interq}. Si 10 μm > R_{interq}. Si

Institut

Ruđer

Bošković

RD50

 → General trend: irradiation → R_{interq.} ↓, except:
 SiC highest neutron & proton Φ (with rectification character lost) Si bulk R_{interq.} saturation for highest Φ

Radiation-induced charge build-up in diode interquadrant isolation, studied by means of MOS test structures (see ref. article)

CSIC

11/15

Institute

The 37th RD50 Workshop (Zagreb 18-20 Nov 2020, online)

SiC alpha particle detection

SRIM => α **range** ~ **12-15** μ**m** < epi-SiC

12/15

Institute

Non-irradiated: 3 peaks with centroids around channels 210, 230, 250

➡ SiC spectra acquisition @ room T (I_{reverse SiC} << I_{reverse Si} Si noise)

Capability for α detection is still observed for high irradiation fluences where no electrical rectification character is observed

→ Peaks **shift** + **broaden** for **highest** neutron and proton **fluences** (defects → recombination/charge traps → collected charge ψ , straggling \uparrow)

CSIC

The 37th RD50 Workshop (Zagreb 18-20 Nov 2020, online)

Institut

Ruđer

Bošković

RD50

SiC charge collection efficiency

Non-irradiated efficiency saturation @~250 V (W_{dep}~12.5 μm) (in agreement with simulated active depth for α detection)

 Capability for α detection is still observed for high irradiation fluences where no electrical rectification character is observed
 For example, ΔCCE @400V:

~-10% @1x10¹⁶e/cm², ~-66% @1x10¹⁵ n/cm², ~-50% @1x10¹⁵ p/cm²

The 37th RD50 Workshop (Zagreb 18-20 Nov 2020, online)

Institut

Ruđer

Bošković

D50

Summary & outlook

- 4Q p-n junction diodes fabricated on epitaxied SiC, as well as on HR FZ bulk and 10 μm-Si
- ➡ Effects 2 MeV e-, neutron & 24 GeV/c p+ on electrical characteristics
- ➡ Low I_{reverse} for SiC devices subjected to all studied irradiations, with loss of electrical rectification character for highest fluences
- ➡ Impact of irradiation on R_{interquadrant} (and charge build-up in interquadrant isolation) have been assessed
- ➡ Tri-α source → SiC device performance as a radiation detector is preserved at room T, at least up to 2x10¹⁵ n/cm², as well as all other reached e- and p+ fluences
- Studies/collaboration would be needed to get a better picture of the involved phenomena (defect characterization, annealing, simulation...)
- Some superior properties of SiC devices. In particular, advantages for α particle detection in plasma diagnostic systems for future nuclear fusion reactors is envisioned

Institut

Ruđer

Bošković

Thank you very much for your attention

This work was supported in part by the **Spanish Ministry of Science**, **Innovation and Universities** through the Nuclear and Particle Physics Program under Project FIS-FPN-RTI2018-094906-B-C22 (MCIU/FEDER UE), in part by the **European Union's Horizon 2020** Research and Innovation Program under Grant 654168 (AIDA-2020), in part by a collaborative research project at Nuclear Professional School, School of Engineering, **The University of Tokyo**, under Grant 20016, in part by The **Japan Society for the Promotion of Science KAKNHI**, under Grant JP19K05337, and in part by MINECO through the use of the **Spanish ICTS Network MICRONANOFABS**. The work of Gemma Rius was supported by Spanish Ministry of Science and Innovation through **Ayudas Ramón y Cajal** 2016, under reference RYC-2016-21412.

> The 37th RD50 Workshop (Zagreb 18-20 Nov 2020, online)

Institut

Ruđer

Bošković

