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4H-Silicon carbide (SiC) properties

 Wide bandgap energy (less affected by high T)

 Low leakage current (even after irradiation and room T)

 High transparency (not affected by visible light)

 High saturation velocity (potential for timing applications)

 High breakdown voltage, high termal conductivity (power devices)

 High atomic displacement threshold energy (potential radiation hardness)

 Potential for fabrication of 3D detectors and other NEMS structures

 High quality SiC substrates available (up to 6-inch) (commercial applications)

www.st.com
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 X-ray beam monitors (Synchrotron)

4-quadrant diodes

Transmissive mode

<10mm Si => >90% transmission (10 keV XR)

 Space applications (solar tracking systems (bulk Si))

Dark current  (“T-proof”)

Transparency  (visible “light-proof”)

Superior radiation hardness?

WBG

Diamond
(cost area process)

SiC
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in press (early access)

Radiation effects on SiC for detectors

 Renewed interest in radiation effects on SiC technologies for the
envisaged applications (fusion, HEP, space, synchrotron, medical…) 

 Significant number of existing results, some from more primitive
substrates, different polytypes, different irradiation sources, mostly
Schottky diode structures but also p-n junction diodes

 Important pioneering results from RD50 collaboration already
described most of the radiation-induced observed effects

 The present work is an occasion to re-visit the potential of state-of-
the-art SiC material for radiation detectors

https://doi.org/10.1109/TNS.2020.3029730
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SiC, Si bulk & Si 10 mm

● Device fabrication at IMB-CNM cleanroom

● 3 substrates (same photolithographic mask set), p-on-n process

● Single + 4Q diodes + MOS capacitors (interquadrant isolation)

4Q diode 

Epitaxied 4H-SiC

HR FZ Si 10 mm

HR FZ Si Bulk (VFD~130V)

J.M. Rafí, et al., J. Instrum., 2017, C01004, DOI: 10.1088/1748-0221/12/01/C01004
J.M. Rafí, et al., J. Instrum., 2018, C01045, DOI: 10.1088/1748-0221/13/01/C01045

d=25 mm
area=

0.885 cm2

https://iopscience.iop.org/article/10.1088/1748-0221/12/01/C01004
https://iopscience.iop.org/article/10.1088/1748-0221/13/01/C01045
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● Unbiased irradiations (terminals left floating)

2 MeV e- @Takasaki-QST, Takasaki, Japan
F = 1x1014, 1x1015, 1x1016 e/cm2

NIEL hardness factor (Si-1MeV n) ~ 0.0249

Neutron @JSI TRIGA, Ljubljana, Slovenia
F = 5x1013, 1x1014, 5x1014, 1x1015, 2x1015, 1x1017, 3x1017 n/cm2

NIEL hardness factor (Si-1MeV n) ~ 0.9

24 GeV/c p+ @PS-IRRAD CERN, Geneva, Switzerland
F = 8.6x1013, 1.5x1014, 1.0x1015, 1.7x1015, 2.5x1015 p/cm2

NIEL hardness factor (Si-1MeV n) ~ 0.56

● Electrical characterization (except Rinterquadrant measurements)

I-V (low V): HP4155B Semiconductor Parameter Analyzer (triax)
I-V (High V): Ke2410 SMU (coax) and new Ke2470 SMU (triax)
C-V: Agilent 4284A Precision LCR meter (+coupling box when needed)

Irradiations and Experimental

All 4
Quadrants

shorted
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SiC I-V characteristics (low V)

neutron protonelectron

 SiC: low Ireverse for all irradiation fluences (@ room T)

 Bulk Si & 10 mm-Si: >4-6 orders magnitude higher Ireverse

 Radiation-induced decrease in Iforward

radiation induced defects (VC,VSi,VC+Vsi…)  conduction resistance
carrier removal/doping compensation  Rseries (unipolar Schottky)

trecombination  conduction modulation drift layer (bipolar p-n)

 Electrical rectification character is lost for the highest fluences
(1x1016 e/cm2 & >1x1015 n-p/cm2) (lightly doped epi becoming intrinsic)
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I-V reverse characteristics (low V)

@5V

@25V

@5V

𝐼𝑣𝑜𝑙 ≡
𝐼𝑟𝑒𝑣𝑒𝑟𝑠𝑒

𝐴𝑟𝑒𝑎 · 𝑊𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛

𝑰𝒗𝒐𝒍 = 𝜶 · 𝜱

Bulk Si & 10 mm-Si:
generation-recombination 

centers  Ivol 

𝛼~3.5𝑥10−17 𝐴/𝑐𝑚

(1 Mev-n eq.)

 SiC: low Ireverse  difficult extract a (perhaps ~5 orders <Si for e-irr.)

Lower creation damage due to higher atomic displacement energies
Lower carrier generation in created defects due to higher bandgap

Even slight Ireverse decrease for highest p+ and n fluences
(possible compensation of native defects originally responsible for Ireverse)
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SiC I-V reverse characteristics (high V)

preliminary results with Ke2470 triaxial:

 SiC: quite low Ireverse up to 500 V for all irradiation conditions

 A bit higher for 2 MeV e-irradiated (to be studied/experimental…?)

Set-up Ke2410 SMU coaxial => Set-up Ke2470 SMU triaxial
(resolution ~ 1 nA) (resolution ~ 30-50 pA)
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SiC C-V characteristics

 Diode-like C-V only for lowest F (≤1x1015 e/cm2, <1x1014 n-p/cm2)

 Flat C-V for highest F (fixed C ~ 25 pF = Area·eSiC/epilayer thickness) 
Indicative of lightly doped n-epilayer becoming intrinsic due to 
compensation by radiation-induced defects

 Carrier removal rates [cm-1]: 0.72 (e-), 19.8 (n), 9.3 (p+) cm-1, in the 
range of some previous estimations for e- and n irrad. Schottky barriers
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 Rinterq. SiC > Rinterq. Si 10 mm > Rinterq. Si

 General trend: irradiation  Rinterq. , except:
SiC highest neutron & proton F (with rectification character lost)
Si bulk Rinterq. saturation for highest F

 Radiation-induced charge build-up in diode interquadrant 
isolation, studied by means of MOS test structures (see ref. article)

Interquadrant resistance (Rinterq.) 

𝑅𝑖𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡 ≡
1

𝑑𝐼1
𝑑𝑉2
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SiC alpha particle detection

neutron protonelectron

239Pu
241Am
244Cm

Diode SRIM => a range
~ 12-15 mm < epi-SiC

 Non-irradiated: 3 peaks with centroids around channels 210, 230, 250

 SiC spectra acquisition @ room T (Ireverse SiC << Ireverse Si Si noise)

 Capability for a detection is still observed for high irradiation 
fluences where no electrical rectification character is observed

 Peaks shift + broaden for highest neutron and proton fluences
(defects  recombination/charge traps  collected charge, straggling)

Tri-a source
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SiC charge collection efficiency

neutron protonelectron

 Non-irradiated efficiency saturation @~250 V (Wdep~12.5 mm)

(in agreement with simulated active depth for a detection)

 Capability for a detection is still observed for high irradiation 
fluences where no electrical rectification character is observed

For example, DCCE @400V:
~-10% @1x1016e/cm2, ~-66% @1x1015 n/cm2, ~-50% @1x1015 p/cm2
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Summary & outlook

 4Q p-n junction diodes fabricated on epitaxied SiC, as well as on
HR FZ bulk and 10 mm-Si

 Effects 2 MeV e-, neutron & 24 GeV/c p+ on electrical characteristics

 Low Ireverse for SiC devices subjected to all studied irradiations, with
loss of electrical rectification character for highest fluences

 Impact of irradiation on Rinterquadrant (and charge build-up in
interquadrant isolation) have been assessed

 Tri-a source  SiC device performance as a radiation detector is

preserved at room T, at least up to 2x1015 n/cm2, as well as all other
reached e- and p+ fluences

 Studies/collaboration would be needed to get a better picture of the
involved phenomena (defect characterization, annealing, simulation…)

 Some superior properties of SiC devices. In particular, advantages
for a particle detection in plasma diagnostic systems for future
nuclear fusion reactors is envisioned
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