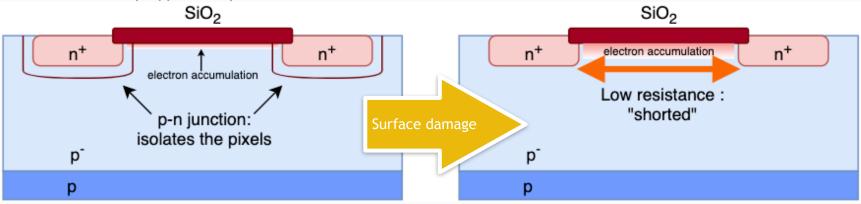


MEASUREMENTS OF INTER-PIXEL RESISTANCE

Sinuo Zhang*, Sabine Hartung, David-Leon Pohl, Jochen Dingfelder

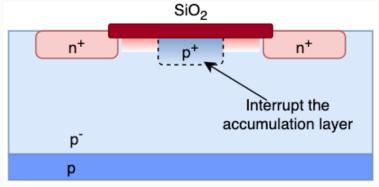
20.11.2020, 37th RD50 Workshop


* s.zhang@physik.uni-bonn.de

ISOLATION BETWEEN ELECTRODE IMPLANTS

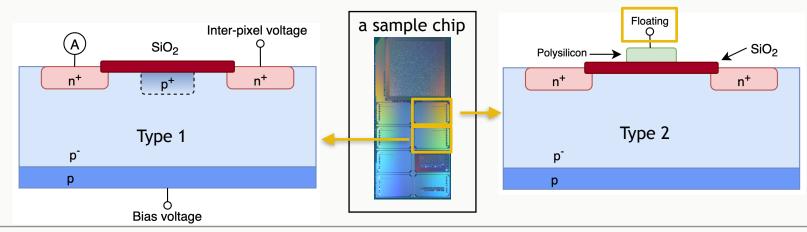
- shorted electrodes degrade the spatial resolution
- N-on-P sensors: p-type bulk provides a natural isolation

- Electron accumulation layer can present beneath the oxide (figures are not in scale)
 -> higher bias voltages can mitigate this problem*
- Surface damage after irradiation* -> higher concentration of oxide charge & interface traps -> more pronounced electron accumulation -> reduction of the inter-pixel resistance


*A.Dirlamm et al(2020): <u>https://indico.cern.ch/event/813597/contributions/3727777/</u> (more previous studies can be found in the references of this presentation)

- P-stop or p-spray isolation in passive sensors is (more or less) a default implementation, since it can:
 - shape the E-field between pixels
 - enhance the inter-pixel isolation

• Problem: p-stop can introduce higher pixel capacitances H. Krüger and E. Kimmerle (2020): https://arxiv.org/abs/2010.03267

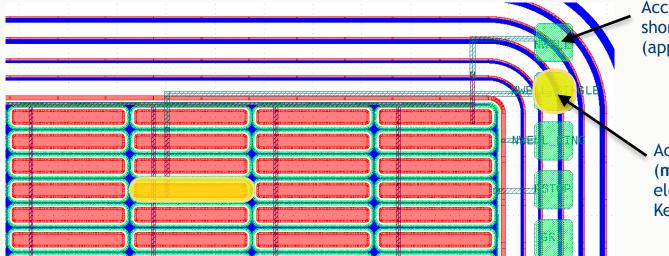

- How large is the impact of the p-type isolation?
- After proton irradiation?
- If p-stops can be removed -> lower pixel capacitance: a great advantage for timing resolution, power consumption, and electronic noise

TWO TYPES OF STRUCTURES

- From passive CMOS sensor test-structures fabricated in LFoundry 150 nm CMOS technology
- CZ wafer, thickness = $200 \,\mu \text{m}$, pixel size = $50 \times 250 \,\mu \text{m}^2$
- Major difference is the structure of the inter-pixel region:
 - type 1: p-stop
 - type 2: no p-stop; poly silicon layer above the oxide (field-plate). voltage can be applied at poly silicon to modify the field beneath (floating this time)

PREPARATION OF SAMPLES

- 15 samples for measurements:
 - 3 unirradiated samples
 - 3 samples for each fluence:
 - $5 \times 10^{14} \, neq \, cm^{-2}$ (one chip is damaged)
 - $1 \times 10^{15} \,\mathrm{neq} \,\mathrm{cm}^{-2}$
 - $5 \times 10^{15} \,\mathrm{neq} \,\mathrm{cm}^{-2}$
 - $1 \times 10^{16} \,\mathrm{neq} \,\mathrm{cm}^{-2}$
- Facility for irradiation:
 - 14 MeV protons from cyclotron at Bonn

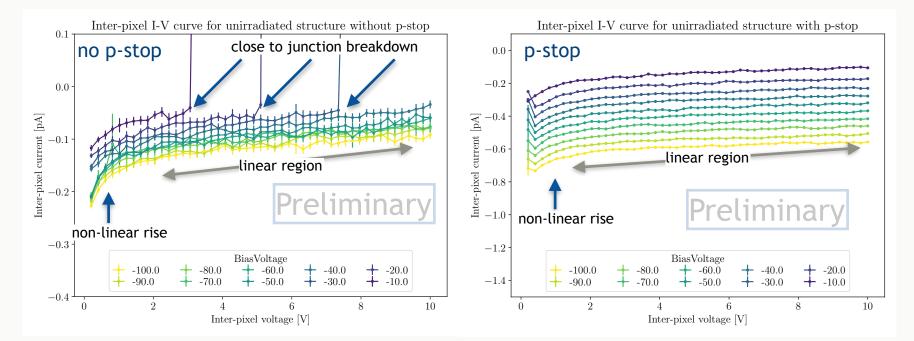


The Bonn Isochronous Cyclotron at Helmholtz Institut für Strahlen- und Kernphysik

P. Wolf et al. (2019): https://indico.cern.ch/event/855994/contributions/3637076/

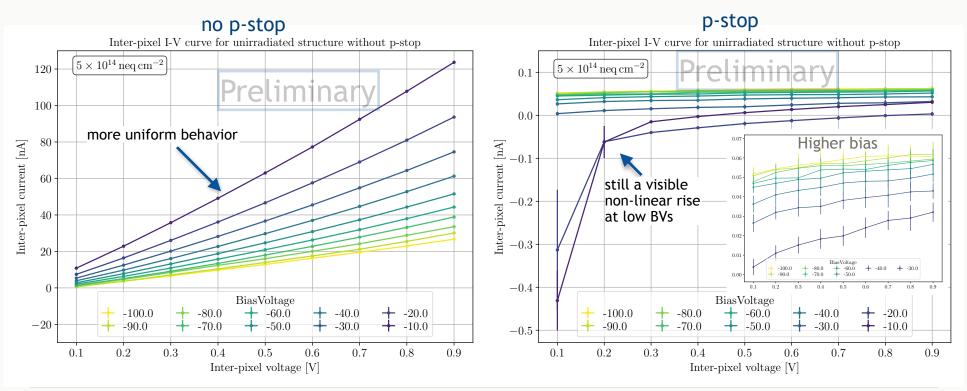
MEASURING TEST-STRUCTURES

Access to the rest short-circuited pixels (apply inter-pixel voltage)

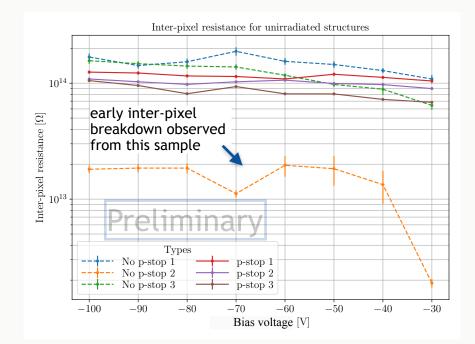

Access to a single pixel (measure current using electrometer: Keithley 6517A)

- Electrode implant (N-well) of the highlighted pixel can be accessed independently
- The N-wells of the rest pixels are short-circuited through a metal grid
- Measure the current-voltage behaviour between one pixel and the surrounding pixels
- Evaluate the resistance through fitting the inter-pixel I-V curve

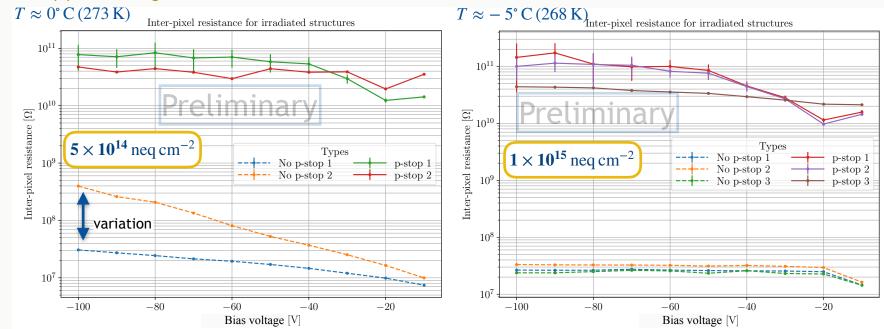
INTER-PIXEL I-V BEFORE IRRADIATION


- Shows characteristics of p-n junctions
- Fitting of the linear region delivers the inter-pixel resistance

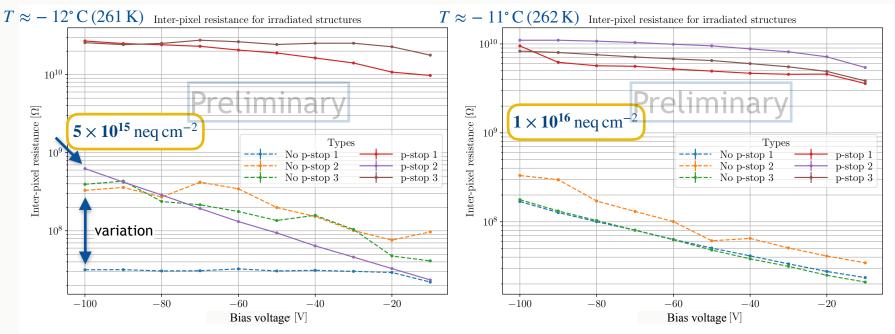
INTER-PIXEL I-V AFTER IRRADIATION


• Shows more uniform (linear) behavior, especially for higher bias voltages

INTER-PIXEL RESISTANCE BEFORE IRRADIATION


- Measured at $T \approx 20^{\circ} \mathrm{C} \, (293 \, \mathrm{K})$
- WITH p-stop (solid lines):
 - resistances are approximately $1 \times 10^{14} \, \Omega$
- WITHOUT p-stop (dashed lines):
 - 2 samples reveal a similar resistance of $1 imes 10^{14}\,\Omega$
 - One sample has a lower resistance, the difference is approximately 1 order of magnitude
 - this sample shows an early breakdown at approximately 3 V inter-pixel voltage
- Before irradiation, high inter-pixel resistance can be achieved without using p-stop

INTER-PIXEL RESISTANCE AFTER IRRADIATION (LOWER FLUENCES)

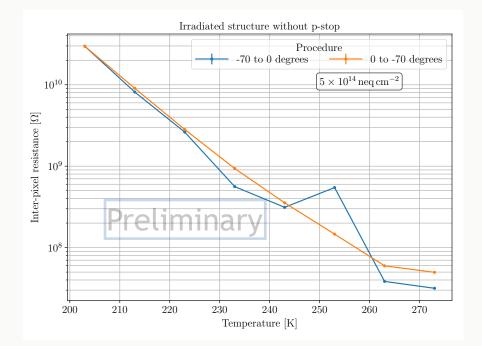

- Decrease of resistance is observed (WITH p-stop: solid lines; WITHOUT p-stop: dashed lines)
- Increases with bias voltage
- P-stop provides a higher resistance

INTER-PIXEL RESISTANCE AFTER IRRADIATION (HIGHER FLUENCES)

- Resistances are similar as with lower fluences (WITH p-stop: solid lines; WITHOUT p-stop: dashed lines)
- Increases with bias voltage; p-stop provides a higher resistance
- A sample WITH p-stop gives unusually low resistance (left figure, label: "p-stop 2"), guess: malfunctioning sensor

SUMMARY OF THE PRELIMINARY RESULTS

Fluence	Resistance BV=-100 V	Resistance (p-stop) BV=-100 V	Temperature & Relative Humidity	
0	$\sim 10^{13} - 10^{14} \Omega$	$\sim 10^{14} \Omega$	$\approx 293 \mathrm{K} \& \approx 8 \% \mathrm{RH}$	• High resistance before irradiation at 293 K
$5 \times 10^{14} \mathrm{neq}\mathrm{cm}^{-2}$	$\sim 10^7 - 10^8 \Omega$	$\sim 10^{10} \Omega$	$\approx 273 \mathrm{K} \& \approx 12 \% \mathrm{RH}$	•
$1 \times 10^{15} \mathrm{neq} \mathrm{cm}^{-2}$	$\sim 10^7 \Omega$	$\sim 10^{11} \Omega$	$\approx 268 \mathrm{K} \& \approx 13 \% \mathrm{RH}$	
$5 \times 10^{15} \mathrm{neq} \mathrm{cm}^{-2}$	$\sim 10^7 - 10^8 \Omega$	$\sim 10^8-10^{10}\Omega$	$\approx 261 \text{ K} \& \approx 13 \% \text{ RH}$	No significant changes between different
$1 \times 10^{16} \mathrm{neq} \mathrm{cm}^{-2}$	$\sim 10^8 \Omega$	$\sim 10^{10}\Omega$	$\approx 262 \text{ K} \& \approx 15 \% \text{ RH}$	fluences at similar
 Resistance decreases by approximately 6 orders of magnitude Large variation among samples is observed 		 Resistance decapproximately of magnitude Stable among s 	3 orders	temperatures



- Large variation of resistance among samples:
 - appears often for the sensors **WITHOUT** p-stop
 - assumption:

the floating poly silicon field-plate may "pick up" different unknown voltages for each measurement

- Temperature dependent resistance
 - a test of an irradiated sample at $T \in [203,273]$ K
 - resistance increases (exponentially) with decreasing temperature
 - systematic error of the measurement
 - What is the main mechanism of this effect? Mobility?
 Generation & recombination?
 Issue of the measurement setup?

Test: irradiated sensor without p-stop at BV=-100

- Temperature dependent resistance:
 - perform measurements at the same temperature
 - take into account the systematic error
 - search for the main mechanism
- Apply voltages at the field-plate:
 - determine the influence on the resistance
 - search for optimum potentials

- Contribution from TID
 - X-ray irradiation (Bonn) up to ~1 Mrad (Saturation of oxide charge)

SUMMARY & CONCLUSION

- Inter-pixel resistance of passive CMOS test structures with two different types of inter-pixel isolation have been measured before and after proton irradiation
- Resistance BEFORE irradiation:

test-structures WITH & WITHOUT p-stop reveal a similar value in the order of $10^{14}\,\Omega$

- ➡ ability of isolation is the same
- Resistance AFTER irradiation:
 - WITH p-stop: drops by ~3 orders of magnitude
 - WITHOUT p-stop: drops by ~6 orders of magnitude; variation of approx. 1 order of magnitude has been observed
 - p-stop provides better inter-pixel isolation after irradiation
 - \blacktriangleright WITHOUT p-stop, we can still get a resistance $\sim 100\,M\Omega$
 - temperature dependence has been observed
 - ➡ the influence needs to be considered as a systematic error
- Is p-stop necessary?
 - Improvements of the experiment and further investigations are required