

## 37th RD50 Workshop

RD50 project proposal

Passive CMOS submission for sensors and test structures

David-Leon Pohl 20.11.2020

## Reminder



- "Passive" CMOS sensors profit from CMOS process features:
  - Cost-effective, large-scale sensor production
  - Large 8" wafer processing (various post-processing capabilities)
  - Many metal layers; deep implants
  - AC coupling capacitors, bias resistor in each channel
  - Field plates (Sinuos talk)
  - Potential integration of RO electronics
- Experience from former pixel sensor submissions:
  - Large sensor tiles (up to 4 x 4 cm<sup>2</sup>) using reticle stitching demonstrated (Cedrics talk)
  - Up to 1e16 n<sub>eq</sub> / cm<sup>2</sup> seems to work (Yannicks talk)
  - Thinning to 100 um in TAIKO process + flip-chip established
  - 205 k€ costs for 12 x 8" wafer including reticle stitching (recent ATLAS order)

## **Proposal**

RD50

- One submission (~ end next year):
  - Start after current submission is characterized
  - Share a reticle (~26 x 32 mm²) for many test structures and (pixel/strip) sensors
  - One thin full-size, RD53 compatible pixel-sensor
  - Using LFoundry process: 150 200 k€
  - Backside process, TAIKO thinning with IBS
  - Bonn can support design process, anybody wants to join?
- What could we do? (just some ideas, feasibility to be checked...)
  - Thinning to different thicknesses in TAIKO process (50 um 100 um)
  - Inter-channel isolation techniques (field plates, narrow p-stop), to reduce pixel capacitance
  - Testing at extreme fluences >> 1e16 n<sub>eq</sub> / cm<sup>2</sup>
  - Optimization of guard ring structures for higher break down / slim edge
  - Small 25 x 25 um<sup>2</sup> pixels (with fan-out using metal layers for RO chip compatibility)
  - Sub-pixel coding
  - Produce "reference" diodes for NIEL measurements
  - Vary the wafer material (resistivity, CZ/FZ)
  - •