Work plan for SLM technologies

Summary:

Selective laser melting (SLM) is technology where 2D thin layers of atomized fine tungsten powder of the part geometry is fused byt selectively melting by a high-power laser beam. Tungsten SLM technology is owned by several companies, including: EOS, Plansee, Tekna, Farsoon Technologies, SIU System etc. NUST MISIS plans to develop tungsten printing technology to create a prototype calorimeter. For printing, tungsten powder of different quality is used (Fig. 1). Spherical powder allows to print the best quality details. The price of high quality powder is about 30 percent higher (EOS powder - 25 000 CHF per 100 Kg, Farsoon Technologies powder – about 18 000 CHF per 100 Kg).

Fig. 1. Powder morphology: a - spherical powder manufactured by EOS (Germany), b - powder manufactured by Farsoon Technologies (China)

Main requirements for tungsten powder: granulometric composition 5-40 microns, d50=16 microns, chemical composition W min 99.95% (table 1). Quantity 100 kg.

Element	Composition , %		
	min	max	
W	99,95	-	
0	-	0,10	
С	-	0,05	
S	-	0,001	
Al	-	0,001	
Со	-	0,001	
Cu	-	0,001	
Mg	-	0,001	
Mn	-	0,001	
Pb	-	0,001	

Cu	-	0,001
Ca	-	0,001
Cr	-	0,002
K	-	0,002
Na	-	0,002
Fe	-	0,002
Мо	-	0,003
Ni	-	0,003
Residual	-	0,025

Table 1. Chemical composition of the tungsten powder

Benefits of SLM:

- 1. No additional processing needed to make detail
- 2. Quick process of printing detail. For example, printing 23 prototypes requires 311 hours on FS271M machine (Fig. 2).

Fig. 2. Image of detail (a) and arrangement of parts in the camera FS271M machine (b)

Challenges:

- Cannot print tungsten alloys by SLM, because of the low vapor pressure of the additions for instance: W at 2350 K has 10⁻⁷ Pa, at 3000 K has 10⁻²Pa; copper at 1600 K has 10⁵ Pa; iron and nickel at 2350 K has 10² Pa. Hence, any elements except molybdenum during the synthesis using mixture with tungsten will burn out.
- 2. High roughness of detail obtained by the SLM method. (for prototype $Ra = 5 \mu m$ (external); $Ra = 9 \mu m$ (internal).
- 3. Density no more than 18 g/cm^3 .

Plan:

The work is carried out in parallel to obtain three goals:

N⁰	Stage name	Dates	Price	Goals	Responsible
1	Request a tungsten detail (Detail 1) obtained from EOS	24.02.2020 – 20.03.2020	-	Detail 1	Daria Strekalina
2	Measure the roughness of the detail 1	20.03.2020- 27.03.2020	-	Roughness value	Daria Strekalina

1. Goal: Check the roughness of the detail obtained from the tungsten powder by EOS

2. Goal: Check the roughness of the detail obtained from the tungsten powder by Farsoon Technologies

N⁰	Stage name	Dates	Price	Goals	Responsible
1	Design a drawing	26.02.2020 -	-	Detail drawing	Daria Strekalina
	for detail about	28.03.2020			(Ernest Sleptsov
	2x4x4 cm (detail 2)				- graduate
					student)
2	Print detail 2 by	1.04.2020-	Free	Detail 2	Nikita Voronov
	Farsoon	30.04.2020			(Farsoon
	Technologies				Technologies)
3	The effect of	30.04.2020 -	-	The effect of	Daria Strekalina
	surface quality of	06.05.2020		roughness on the	
	detail 2 on GAGG			surface of	
	crystals (measure			GAGG crystals	
	roughness)				

3. Goal: Development of technology for producing an absorber by SLM

№	Stage name	Dates	Price	Goals	Responsible

1	Obtaining BAFA	01.12.2019 -	-	BAFA export	Daria Strekalina
	export permit for	31.03.2020		permit	
	purchasing the				
	tungsten powder				
	from EOS				
2	Buying powder	31.03.2020-	25 000	Tungsten	Daria Strekalina
	from EOS	31.05.2020	CHF	powder,100 kg	
3	Printing of the	01.06.2020 -	-	Development of	Vladimir
	absorber prototype	30.07.2020		the 3D printing	Korolev
	in NUST MISIS.			technologies	
				with W powder	
				on equipment of	
				NUST MISIS.	
				Printing the	
				prototype	
				46.5×46.5×100	
				mm ³ .	
4	Determination of	30.07.2020 -	-	Roughness and	Daria Strekalina
	roughness and	15.08.2020		tolerances value	
	tolerances during				
	printing by EOS				
	powder				
5	Carrying out the	October 2020	-	Investigation the	
	beam tests on a			influence of	
	prototype			allowances level	
				and the density	
				of the absorber	
				on its	
				performance	
				characteristics	
6	*Optimization of	01.09.2020 -	20 000 -	Selection of	Vladimir
	the print mode (if	31.12.2020	25 000	parameters to	Korolev
	required)		CHF	improve	
				technology	

7	Reduce print costs	01.09.2020 -	-	Search and	Daria
		31.12.2020		selection of	Strekalina,
				cheaper powder,	Vladimir
				investigate the	Korolev
				influence of the	
				quality of the	
				powder on the	
				quality of the	
				final product.	

If goal 1 and 2 are not achieved (the roughness will be too high) then goal 3 will stop at the stage of buying powder from EOS (point N_2 2 in goal N_2 3).