DIFFERENTIABLE
ANALYSIS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

We optimise analysis*
end-to-end by making the
profile likelihood
differentiable.

Typical analysis workflow:

Pre-processing
(reconstruction,
skimming, cuts)

A

Invariant mass of
some system
Multivariate
discriminator

A

HistFactory likelihood
Some other
parametric fit
Data-driven likelihood

A

CLs
Feldman-Cousins
Posterior sasampling
Credible intervals
..etc

Typical analysis workflow:

observables

Something with
trainable
parameters @

>

model

HistFactory likelihood
Some other
parametric fit
Data-driven likelihood

A

inference

CLs
Feldman-Cousins
Posterior sampling
Credible intervals
..etc

Train hard, play harder

Standard training goal for a signal/background
discriminator: binary cross entropy

Makes sense to have good discriminative power,
but can we do better?
- NN isn't aware of systematics!
- Could do adversarial training, but hard to scale
to many uncertainties

What we really want is to optimise our observables
with respect to all steps in our downstream
Inference.

v g S
% - A
: fﬁ_':

E % '
Y
Ij . e 3> AT '3

o

#
=

training T - physics
ot . Classifierfz ooy
o
separation &

W
JI.

shutterstr.ck

Motivation: see dguest et al's review: "Deep Learning_ and Its Application to LHC Physics",

specifically this section:
3.1. What Is the Optimization Objective?

https://arxiv.org/pdf/1806.11484.pdf

Jargon alert:
differentiable programmin

Yann LeCun
| 5 January 2018 - &

UK, Deep Learning has outlived its usefulness as a buzz-phrase.
Deep Learning est mort. Vive Differentiable Programming!

Yeah, Differentiable Programming is little more than a rebranding of the
modern collection Deep Learning technigues, the same way Deep
Learning was a rebranding of the modern incarnations of neural nets with
more than two layers.

But the important point is that people are now building a new kind of
software by assembling networks of parameterized functional blocks and
by training them from examples using some form of gradient-based
optimization.

Optimization by

grad

observables

+gradients

Something with
trainable
parameters @

>

model

+gradients
HistFactory likelihood

Some other
parametric fit

Data-driven likelihood

d(inference)
d(¢p)

ient descent

>y

inference
+gradients
CLs

Feldman-Cousins
Posterior sampling
Credible intervals
..etc

Starting point:

Pure python implementation of
HistFactory

Model step iIs already differentiable!
Uses multiple ML libraries as

backends, including pytorch, tensor
flow, and recently...

Lf

differentiable
Yikelihoods

already has
differentiable
{ likelihoods!

A new fece has appeared!
backend

WARNING

CHALLENGER
APPRORCHING

JAX: numpy,
but gradients

JAX Is a modern autograd library that can natively

differentiate pure python and numpy functions up to
arbitrary order.

e.qg:
import jax

X = jax.numpy.sin
jax.grad(x)(0.) # could also do grad(grad(...))

-> DeviceArray(1l., dtype=float32)

Check out the project at
github.com/google/jax!

It can also do other cool stuff, like auto-
vectorisation with jax.vmap, and just-in-time
compilation of 'pure' functions with jaxit!

SO... are we done?

something with CLs calculations
trainable in jax N
parameters @

in jax ...not quite

https://github.com/google/jax

CLs values use the

Both numerator and denominator involve maximum likelihood fits!
Could track gradients in every unrolled iteration of the fits, but hard to do.

Solution?

Fixed-point differentiation

A fixed point x of a function is where
funec(x) = x

£(x)

minimize(f, x init) -> Xg

minimize(f, x init = Xg) -> Xp

The basic idea of fixed point differentiation
"""" Is to only calculate the gradients in the
X neighbourhood of the fixed point.

S
o

Gradients with respect to what?
fis the model, which depends on the yields s,b (which depend on ¢)

"FAX is the magic
sauce that allows us to
implicitly differentiate"

Lukas Heinrich

fax: fixed-point jax

Implicit and competitive differentiation in JAX.

Our "competitive differentiation" approach uses Competitive Gradient Descent to solve the equality-constrained nonlinear
program associated with the fixed-point problem. A standalone implementation of CGD is provided under

fax/competitive/cga.py and the equality-constrained solver derived from it can be accessed via
fax.constrained.cga_lagrange_min or fax.constrained.cga_ecp . Animplementation of implicit differentiation based on

Christianson's two-phases reverse accumulation algorithm can also be obtained with the function
fax.implicit.two_phase_solver .

Function we use: <-- paper linked for the brave

@misc{gehring2019fax,

author = {Clement Gehring, Pierre-Luc Bacon, Florian Schaefer},

title = {{FAX: differentiating fixed point problems in JAX}},

note = {Available at: https://github.com/gehring/fax},
year = {2019} Huge thanks to

} Clement Gehring!

https://github.com/gehring/fax
https://doi.org/10.1080/10556789408805572
https://github.com/gehring

- % ek

gradients

l v L

All at once,
everything is
differentiable

neural end-to-end
'& optimised statistics

github.com/pyhtf/neos

https://github.com/pyhf/neos

ice
sedurat end-to-end
optimised statistics

nees

github.com/pyhtf/neos

https://github.com/pyhf/neos

Problem setup:

e Signal data drawn from a 2D multivariate gaussian.

e Background data has two modes -- 2D gaussians with different means and
covariances.

e Histogram constructed 'continuously’, i.e. NN(¢p) outputs two logits (a,b) for an
event, then the event is put into all bins, weighted by the logits.

e Background yields are the mean of the bin counts for each mode, and the per-

0in uncertainty is the difference/2.

e Model constructed from yields for signal and background events,

e GGlobal and constrained fits are wrapped with the two_phase_solver method to
get gradients wrt yields (which depend on)

e (Calculate CLs, then backprop with grad(CLs)(®)

Oh, and I lied about the pyhf. (we use a dummy version with minimal functionality)

ne@s : Aseasy as |,

Predict logits for each

event

cl:

y 2

Calculate CLs differentiably, and Bin the result weighted by the
backpropagate wrt NN weights logits, and construct model

0.6

0.5 1

0.4 -

0.3 1

0.2 1

0.1 -

100

frequency

0.0

0 10 20 30 40 =0 60 0.0 0.5 1.0

epoch nn output

Future work:

Go beyond two bins (not too tricky)

Don't lie about pynf :)

Incorporate more familiar systematics, e.g. 3 blobs for
nominal, up, downward variations

B il R e B i p——

https://knowyourmeme.com/memes/future-sending-exes-texts

thanks for listening :)

and nice to meet you all!

Twitter: @phi nate @lukasheinrich

https://twitter.com/phi_nate
https://twitter.com/lukasheinrich_

