
DIFFERENTIABLE
ANALYSIS
Lukas Heinrich, Nathan Simpson <-- me

We optimise analysis*
end-to-end by making the
profile likelihood
differentiable. *currently just a toy problem

Typical analysis workflow:

Invariant mass of
some system
Multivariate
discriminator

observables

HistFactory likelihood
Some other
parametric fit
Data-driven likelihood

model

CLs
Feldman-Cousins
Posterior sampling
Credible intervals
...etc

inference

Pre-processing
(reconstruction,
skimming, cuts)

data

Typical analysis workflow:

Something with
trainable
parameters φ

observables

Pre-processing
(reconstruction,
skimming, cuts)

data

HistFactory likelihood
Some other
parametric fit
Data-driven likelihood

model

CLs
Feldman-Cousins
Posterior sampling
Credible intervals
...etc

inference

Train hard, play harder
Standard training goal for a signal/background
discriminator: binary cross entropy

Makes sense to have good discriminative power,
but can we do better?

- NN isn't aware of systematics!
- Could do adversarial training, but hard to scale
to many uncertainties

What we really want is to optimise our observables
with respect to all steps in our downstream
inference.

physics
goalclassifier

training
set

separation

Motivation: see dguest et al's review: "Deep Learning and Its Application to LHC Physics",
specifically this section:

3.1. What Is the Optimization Objective?

https://arxiv.org/pdf/1806.11484.pdf

Jargon alert:
differentiable programming

Optimization by
gradstudentient descent

Something with
trainable
parameters φ

observables

HistFactory likelihood
Some other
parametric fit
Data-driven likelihood

model

CLs
Feldman-Cousins
Posterior sampling
Credible intervals
...etc

inference

d(inference)
d(φ)

+gradients

+gradients

+gradients

Starting point: pyhf

already has
differentiable

likelihoods!

Pure python implementation of
HistFactory

Model step is already differentiable!

Uses multiple ML libraries as

backends, including pytorch, tensor
flow, and recently...

backend

JAX is a modern autograd library that can natively
differentiate pure python and numpy functions up to
arbitrary order.

e.g:

import jax

x = jax.numpy.sin
jax.grad(x)(0.) # could also do grad(grad(...))

-> DeviceArray(1., dtype=float32)

JAX: numpy,
but gradients

It can also do other cool stuff, like auto-
vectorisation with jax.vmap, and just-in-time
compilation of 'pure' functions with jax.jit!

Check out the project at
github.com/google/jax!

so... are we done?

something with
trainable
parameters φ
in jax

observables

CLs calculations
in jax

inference

...not quite

https://github.com/google/jax

CLs values use the
profile likelihood:

Both numerator and denominator involve maximum likelihood fits!
Could track gradients in every unrolled iteration of the fits, but hard to do.

Solution?

Fixed-point differentiation

x₀

minimize(f, x_init) -> x₀
minimize(f, x_init = x₀) -> x₀

x

f(x) A fixed point x of a function is where
func(x) = x

The basic idea of fixed point differentiation
is to only calculate the gradients in the

neighbourhood of the fixed point.

Gradients with respect to what?
f is the model, which depends on the yields s,b (which depend on φ)

"FAX is the magic
sauce that allows us to
implicitly differentiate"

Lukas Heinrich

@misc{gehring2019fax,

 author = {Clement Gehring, Pierre-Luc Bacon, Florian Schaefer},

 title = {{FAX: differentiating fixed point problems in JAX}},

 note = {Available at: https://github.com/gehring/fax},

 year = {2019}

}

Function we use: Two-phase solver <-- paper linked for the brave

Huge thanks to
Clement Gehring!

https://github.com/gehring/fax
https://doi.org/10.1080/10556789408805572
https://github.com/gehring

All at once,
everything is
differentiable

gradients

jax

more
gradients

ne

s

neural end-to-end
optimised statistics

github.com/pyhf/neos

https://github.com/pyhf/neos

ne

s

neural end-to-end
optimised statistics

github.com/pyhf/neos

nice

https://github.com/pyhf/neos

Problem setup:
Signal data drawn from a 2D multivariate gaussian.
Background data has two modes -- 2D gaussians with different means and
covariances.
Histogram constructed 'continuously', i.e. NN(φ) outputs two logits (a,b) for an
event, then the event is put into all bins, weighted by the logits.
Background yields are the mean of the bin counts for each mode, and the per-
bin uncertainty is the difference/2.
Model constructed from yields for signal and background events,
Global and constrained fits are wrapped with the two_phase_solver method to
get gradients wrt yields (which depend on φ)
Calculate CLs, then backprop with grad(CLs)(φ)

Oh, and I lied about the pyhf. (we use a dummy version with minimal functionality)

: As easy as 1, 3, 2

Predict logits for each
event

1)
Calculate CLs differentiably, and
backpropagate wrt NN weights

3)
Bin the result weighted by the
logits, and construct model

2)

ne

s

Future work:
Go beyond two bins (not too tricky)

Don't lie about pyhf :)

Incorporate more familiar systematics, e.g. 3 blobs for
nominal, up, downward variations

https://knowyourmeme.com/memes/future-sending-exes-texts

https://knowyourmeme.com/memes/future-sending-exes-texts

thanks for listening :)
and nice to meet you all!

Twitter: @phi_nate @lukasheinrich_

https://twitter.com/phi_nate
https://twitter.com/lukasheinrich_

