FPGAs for Monte —

About Me

| workin NERSC's Advanced Technologies Group
— ATG investigates upcoming computing technologies for
NERSC’s HPC use cases
* Investigate hardware and software developments
* Currently studying FPGAs and other dataflow architectures

Meeting goals

* Provide a brief, high-level description of FPGA accelerators

and how they work

* Explain NERSC’s Advanced Technologies Group interest and
FPGA research

* QOpen discussion as to applicability of FPGAs for your
application

What is an FPGA?

Field Programmable Gate Arrays
Integrated circuit designed to be
configured by users

Programs become FPGA circuits

Lots of on-chip memory relative to CPU
caches

Ideal for pipeline parallelism

On-Die CPU

Ethernet

LEJLEfEA]LE[LE
LEJLELE]LE[LE
LEJLELE]LE[LE
LEJLELE]LE[LE
LEJLE[ES|LEJLE

PCle

Memory Controller

tecture

FPGA Arch

ERERS

Adaptive Logic

©
S =
A A
V)]
o
Rl U]
oo O
[N

Module
Register

Adaptive Logic

X

8

2 — NI NN N NN

W DORaAEREARANS
SN ENENNNEENENNEENNNERREEN

-

m 4 IIIIIUIII-I-lIu“-nlll-l-l-lIl

& Ll L] EEEEEEENEN

wv

[-

S B e R B P

[g &1

Module (ALM)

n
"

-

s

"

L0 -0

Routing Switch

uge Programmable
"

T
==
"

FPGA programs

* Think of FPGA programs as the
compiler’s instruction graph
written into hardware

e Data flows through hardware,
rather than instructions being
executed on data

* Once a stage (row on figure to the
right) is complete, the next data
can start

* |deally, initialization interval (1) is
1, meaning a new item is
processed each clock cycle

m

Dynamically Scheduled Logic

* Instructions connect to form kernels,
which themselves can connect via pipes

* Some paths may take more clock cycles
than others

 Where needed, shift registers can be used
to delay output

* Pipes have a configurable depth to help
reduce stalling

* If next data not available, sections can
wait

m

FPGA “Vectorization”

* When there is no data
dependence, instructions can
be mapped to hardware to
occur simultaneously

e Like vectorization, but

H 0
(T,
A w
* +
2Ly

instructions executed are
arbitrary

m

Task Parallelism

FPGAs are excellent for task parallelism, where multiple kernels
running asynchronously can pass data back and forth via pipes
and a producer/consumer model

Kernel 1 Kernel 2
for(1=0..N) { for(i=0..N) {

mypipe: :write (x); » Y = mypipe::read();

Pipeline vs Data Parallelism

=
-} F
N

FPGAs can express both
types of parallelism

m

FPGA Optimization

» Single work-item kernel (circuit for a single thread)
result=((A*B)+C)+ (D *E)) + (F * G);

[B]
time @ (81 [0o] [E]
e BHY
@ © OLIOIO
T g
Y o Result’
DFG generated and Balancing the graph with
--fp-relaxed 11

scheduled by Altera
OpenCL offline Note: result may differ due to

NER i ;
m compiler rounding errors

Pipelining between kernels

Kernels (circuits) can communicate via Global Mem (left) or directly via channels/pipes (right)

Global Memory Global Memory

Kernel 0 Kernel 1 Kernel 2 Kernel 0 Kernel 1

Register/BRAM FIFO 12

FPGA “pipes” avoid going back to global

memory
NERSC

Conditional and Loop
for(int i=0; i<N; i++){
C[i] = A[i] + BJi]

if(C) {
branchO();

lelse {
branchl();

} Load both branches because
there is no notion of PC

e

w

OCL generates
code to execute

loops
sequentially
13

BranchO Branchl
circuit circuit

Similar Hardware

CGRAs (Coarse-grained reconfigurable
architecture), like an FPGA but wide data paths
and operations, not wires and gates

Main Memory

\

PE

From Neighbors & Memory

T

Systolic Arrays, such as Xilinx “Al
Cores”

Elements of dataflow like simple CPU
cores rather than logic gates

Dedicated
Interconnect

» Non-blocking
* Deterministic

Al
Engine

=
w
=

= Al
g Engine

g _~
= Engine

.

Local, Distributed Memory
*No cache misses

« Higher bandwidth

« Less capacity required

£ XILINX.

NERSC ATG Interest

* FPGAs have traditionally been programmed at a very low level by hardware
engineers working with wires and gates. Higher level languages have been made
available for FPGA programming recently.

* Traditionally used for low latency and long/narrow parallel workloads like signal
processing, video encoding, etc.

 The NERSC Advanced Technologies Group is interested in studying the applicability
of FPGAs for scientific use cases in light of recent programmability improvements.

* Moore’s Law is coming to an end

 FPGAs tend to be energy efficient, important as Dennard Scaling comes to an end

* We are looking for applications which work well on FPGAs

Monte Carlo Transport and FPGAs

* From talking with Jonathan, it sounds like FPGAs creating a
FIFO queue of particles being pushed around a computational

circle could work well.
* Code has a lot of branching, which has an area cost but not a

time cost
* Can kernels for different types of particles, stages in the
processing, etc. be extracted?

