Measurement of the polarization observables T,P,H and F for $p\pi^0$, $n\pi^+$ (and $p\eta$) final states

Physics Advisory Committee Meeting 2020

Farah Afzal, Y. Wunderlich 12.03.2020

University of Bonn

- 1. Motivation
- 2. Proposed experiment
- 3. Requested beamtime

Motivation

Baryon spectroscopy

Baryon spectroscopy

•
$$\frac{d\sigma}{d\Omega_0}(W,\theta) \propto \sum_{\text{spins}} | < f |\mathcal{F}|i > |^2$$

Photoproduction amplitude $\mathcal{F} \leftrightarrow 4$ complex amplitudes (CGLN: F_1, F_2, F_3, F_4)

Baryon spectroscopy

• $\frac{d\sigma}{d\Omega_0}(W,\theta) \propto \sum_{\text{spins}} | < f |\mathcal{F}|i > |^2$

Photoproduction amplitude $\mathcal{F} \leftrightarrow 4$ complex amplitudes (CGLN: F_1, F_2, F_3, F_4)

- PWA: e.g. $F_1 = \sum_{\ell=0}^{\infty} (\ell M_{\ell+} + E_{\ell+}) P'_{\ell+1} + [(\ell+1)M_{\ell-} + E_{\ell-}] P'_{\ell-1}$
 - $E_{\ell\pm}(W), M_{\ell\pm}(W)$: Multipoles
 - $P_{\ell \pm 1}(\cos \theta_{cm})$: Legendre polynomials

• $\frac{d\sigma}{d\Omega_0}(W,\theta) \propto \sum_{\text{spins}} | < f |\mathcal{F}|i > |^2$

Photoproduction amplitude $\mathcal{F} \leftrightarrow 4$ complex amplitudes (CGLN: F_1, F_2, F_3, F_4)

- PWA: e.g. $F_1 = \sum_{\ell=0}^{\infty} (\ell M_{\ell+} + E_{\ell+}) P'_{\ell+1} + [(\ell+1)M_{\ell-} + E_{\ell-}] P'_{\ell-1}$
 - $E_{\ell\pm}(W), M_{\ell\pm}(W)$: Multipoles
 - $P_{\ell \pm 1}(\cos \theta_{cm})$: Legendre polynomials
- $\sigma \sim |E_{0+}|^2 + |E_{1+}|^2 + |M_{1+}|^2 + |M_{1-}|^2 + \dots$
 - \rightarrow unpolarized total cross section is sensitive to dominant contributing resonances

• Advantage: Sensitive to interferences between dominant partial waves and smaller partial waves

Photon		Tar	get		Rec	oil nu	icleon	Targ	et an	d rec	oil	
polarization		polarization		polarization		polarizations						
		Х	Υ	Z(beam)	X'	Y'	Z'	X'	X,	Z'	Z'	
								Х	Ζ	Х	Z	
unpolarized	σ	-	Т	-	-	Р	-	T _{x'}	L _{x'}	$T_{z'}$	L _{z'}	
linear	-Σ	н	(-P) -G	$O_{x'}$	(-T)	O _{z'}	(-L _z)	(T _z)	(L _x)	(-T _{x'})	
circular	-	F	-	-E	$C_{x'}$	-	C _{z'}	-	-	-	-	

- At least 8 observables required by Chiang (*W.T.Chiang et al., Nucl. Phys. A 700 (2002) 429-453*) for the extraction of the full spin amplitudes of photoproduction (complete experiment):
 - σ + Σ, T, P + 4 double pol. observables of *BT*, *BR* and/or *TR*

- L. Tiator (2016): mathematically complete sets of just 4 observables are possible in a truncated partial-wave analysis (TPWA)
- Using just the group *S* and *BT*, 6 combinations are possible (L. Tiator (2016), Y. Wunderlich, PhD thesis)

Set-Nr.	Observables				
1	σ_0	Σ	Ď	Ě	
2	σ_0	Σ	Ě	Н	
3	σ_0	Ť	Ř	Ě	
4	σ_0	Ť	Ř	Ğ	
5	σ_0	Ť	Ě	Ň	
6	σ_0	Ť	Ğ	Ň	

• What has been measured so far?

- σ_0, Σ exist with good energy (\leq 30 MeV) and angular (10°) coverage
- G, E and T, F extracted from previous measurements at A2
- Goal: extend database for T, P, H, F for a model-independent TPWA

Truncated PWA performed for $E_{\gamma} = (280 - 420)$ MeV for $p\pi^0$ using $\sigma_0, \Sigma, T, P, F$

 $E_{\gamma} = 350 \text{ MeV}$

- Observable with lowest statistics dictates energy binning
- The polarization observable P is limiting factor for analysis
- Error bars of P in the range of 40-100%

TPWA with data for $p\pi^0$

Truncated PWA performed for $E_{\gamma} =$ (280 - 420) MeV for $p\pi^0$ using $\sigma_0, \Sigma, T, P, F$

 $E_{\gamma} = 350 \text{ MeV}$

• Replacing P data with SAID-CM12 pseudo-data for P with \sim 5% errors

TPWA with data for $p\pi^0$

Truncated PWA performed for $E_{\gamma} = (280 - 420)$ MeV for $p\pi^0$ using $\sigma_0, \Sigma, T, P, F$

- Fit results for $\ell_{\text{max}}=2$ with D-waves fixed to SAID-CM12
- Fit results: using existing P data
 - \bullet using SAID-CM12 pseudo-data for P with $\sim 5\%$ errors

 using 7 or 8 observables (in the 2nd resonance region) leads to less ambiguities for D-wave multipoles

- determine multipole amplitudes for $n\pi^+$ and $p\pi^0$ photoproduction
- combine these to get isospin multipoles

$$\begin{split} \mathcal{M}_{\ell\pm}^{(1/2)} &= \frac{1}{3} \left(\mathcal{M}_{\ell\pm}^{\pi^0 p} + \sqrt{2} \mathcal{M}_{\ell\pm}^{\pi^+ n} \right) \\ \mathcal{M}_{\ell\pm}^{(3/2)} &= \mathcal{M}_{\ell\pm}^{\pi^0 p} - \frac{1}{\sqrt{2}} \mathcal{M}_{\ell\pm}^{\pi^+ n} \end{split}$$

• first direct fit for small energy range (280 MeV - 420 MeV) by

V. F. Grushin et al., Yad. Fiz. 38, 1448 (1983)

• revisited by

R. Workman et al., Phs. Rev. C 83, 035201 (2011)

 \Rightarrow For simultaneous extraction of all isospin multipoles (I = 1/2 and 3/2) we need complete data sets for both(!) channels with comparable kinematic coverage

Existing database for $n\pi^+$

- σ_0, Σ exist with good energy and angular coverage
- G, E extracted from previous measurements at A2

• Goal: perform a model-independent TPWA with 8 observables $\{\sigma_0, \Sigma, G, E, T, P, H, F\}$ to extract isospin multipoles for $E_{\gamma} = 230$ MeV - 830 MeV

- Goal: resolve discrepancy of factor 1.40 \pm 0.05 between CBELSA/TAPS and A2 data using the same data

- Goal: resolve discrepancy of factor 1.40 \pm 0.05 between CBELSA/TAPS and A2 data using the same data

Proposed experiment

Photon beam polarization

- MAMI beam energy: 1557 MeV (MAMI-C), long. polarized electrons
- photon beam: elliptically pol. (long. polarized electrons + diamond radiator)
- coherent edge positions: 350 MeV, 450 MeV, 550 MeV, 650 MeV, 750 MeV, 850 MeV with 2 mm collimator
- relevant energy range: 230 MeV 830 MeV (P, H), 230 MeV 1448 MeV (T, F)
- need to perform Mott measurements for p_e (needed for $p_{\gamma}^{\rm circ}$)

- photon beam: elliptically polarized
- A2 data (for G and E) already taken successfully with elliptically pol. photons
- data taken with 450 MeV coherent edge (diamond) give same results for *E* as taken with amorphous data (F. Afzal, PhD thesis)

UNIVERSITÄT BON

Target

- transversely pol. frozen spin butanol target
- $\,$ $^{3}\text{He}/$ ^{4}He dilution cryostat with 27 mK
- maximum pol.: \sim 90%, average pol.: \sim 70%
- relaxation times: ${\sim}1000~\text{h}$
- need to measure with carbon foam target $(+^{3}He/ {}^{4}He)$ immediately after the butanol data to minimize the systematic error of the carbon background subtraction

Butanol Target

Carbon Target

Detector equipment

Detector equipment

Detector equipment

this work
 CLAS [1] S. Strauch et al., Phys. Lett. B 750 (2015) 53-58

Trigger configuration:

CB Esum \sim 40 MeV OR TAPS BaF_2 M1+ (\sim 40 MeV) vetoed by Cherenkov Place Cherenkov detector between CB and TAPS

Requested beamtime

- time has to be estimated for $n\pi^+$ and for P, H
- 18 energy bins ($\Delta E=$ 34 MeV wide) and $N_{ heta}=$ 18

$$t_{ ext{beamtime}} = N_{ heta} \left[p_{\gamma}^2 \cdot p_T^2 \cdot (\Delta O)^2 \cdot \dot{N}_{\gamma} \cdot n_T \cdot \sigma_{ ext{tot}} \cdot \epsilon_{ ext{acc}} \cdot \Gamma \cdot f_{ ext{livetime}}
ight]^{-1}$$

- p_{γ} : degree of linear pol. component
- $p_T \sim 70\%$: average target polarization degree
- $\Delta O = 0.05$: statistical precision of observable
- $\dot{N}_{\gamma} \sim 5 \times 10^7 \text{ s}^{-1}$: photon flux $(\dot{N}_{\gamma}(\Delta E) = \dot{N}_{e^-}(\Delta E) \cdot \epsilon_{\text{tagg}})$
- $n_T = 0.0918$ barn⁻¹: number of free protons in butanol target
- $\sigma_{\rm tot}$: total unpolarized cross section

•
$$\epsilon_{acc} = \begin{cases} 0.3 & E_{\gamma} \leq 450 \text{MeV} \\ 0.08 & E_{\gamma} > 450 \text{MeV} \end{cases}$$
: average det. and recon. efficiency

- $\Gamma = 1$: branching ratio
- $f_{
 m livetime} \sim 60\%$

coherent edge [MeV]	time _{butanol} [h]	time _{carbon} [h]	time _G [h]
350	8	1	11
450	18	2	55
550	74	10	20
650	119	16	90
750	147	20	67
850	363	49	92
total	729 h (30 d)	98 h (4 d)	335 h (14 d)

coherent edge [MeV]	time _{butanol} [h]	time _{carbon} [h]	time _G [h]
350	8	1	11
450	18	2	55
550	74	10	20
650	119	16	90
750	147	20	67
850	363	49	92
total	729 h (30 d)	98 h (4 d)	335 h (14 d)

▲ A. Belayev et al., Sov. J. Nucl. Phys. 40 (1984) 83

coherent edge [MeV]	time _{butanol} [h]	time _{carbon} [h]	time _G [h]
350	8	1	11
450	18	2	55
550	74	10	20
650	119	16	90
750	147	20	67
850	363	49	92
total	729 h (30 d)	98 h (4 d)	335 h (14 d)

16

coherent edge [MeV]	time _{butanol} [h]	time _{carbon} [h]	time _G [h]
350	8	1	11
450	18	2	55
550	74	10	20
650	119	16	90
750	147	20	67
850	363	49	92
total	729 h (30 d)	98 h (4 d)	335 h (14 d)

coherent edge [MeV]	time _{butanol} [h]	time _{carbon} [h]	time _G [h]
350	8	1	11
450	18	2	55
550	74	10	20
650	119	16	90
750	147	20	67
850	363	49	92
total	729 h (30 d)	98 h (4 d)	335 h (14 d)

In addition time needed for

- time for daily tagging efficiency + Mott measurement (3 $h \cdot 34 = 102 h$)
- time to change/pol. target: 200 h

 \Rightarrow 930 h of pure data-taking + 200 h for target maintenance

Summary

- Goal: Simultaneous measurement of T, P, H, F (230 MeV $\leq E_{\gamma} \leq$ 830 MeV) using elliptically polarized photons and transversely polarized butanol target
 - \Rightarrow Complete *BT* data set up to 830 MeV
 - \Rightarrow Determine $p\pi^0$ and $n\pi^+$ multipole amplitudes at the same time
 - ⇒ Extract isospin multipoles for $\Delta(1232)^{\frac{3}{2}+}(P_{33})$ and second resonance region $(N(1440)^{\frac{1}{2}+}(P_{11}), N(1520)^{\frac{3}{2}-}(D_{13}), N(1535)^{\frac{1}{2}-}(S_{11}))$
- MAMI beam: 1557 MeV, long. pol. electrons
- Target: transversely polarized frozen-spin butanol target
- Detectors: Crystal Ball, TAPS, PID, MWPCs, Cherenkov
- Trigger: CB Esum (\sim 40 MeV) OR BaF_2 M1+ (\sim 40 MeV) vetoed by Cherenkov
- Requested time: 24 h + 200 h + 930 h \approx 1150 h

Backup Slides

$$\dot{N}_{\pi} = \dot{N}_{\gamma} \cdot n_T \cdot \sigma_{\text{tot}} \cdot \epsilon_{\text{acc}} \cdot \Gamma$$

For 230 MeV $\leq E_{\gamma} \leq$ 830 MeV:

- $p\pi^0$: 1367 Hz (185 Hz)
- $n\pi^+$: 303 Hz (41 Hz)

Typical trigger rate for $f_{\text{livetime}} = 60\%$ is ~ 3 kHz (based on previous measurements)

• New final A2 data (in preparation for publication)

J. Ahrens et al., Eur. Phys. J. A 26 (2005) 135
 A. Belayev et al., Sov. J. Nucl. Phys. 40 (1984) 83
 P.J. Bussey et al., Nucl. Phys. B 403-414 (1980) 83

K. Spieker, PhD thesis, 2019

Polarization observables

$$\begin{aligned} \frac{d\sigma}{d\Omega} &= \\ \left(\frac{d\sigma}{d\Omega}\right)_{0} \left[1 - p_{\gamma}^{\text{lin}} \Sigma \cos(2\varphi) + p_{T,y} T - p_{T,y} p_{\gamma}^{\text{lin}} P \cos(2\varphi) - p_{T,x} p_{\gamma}^{\text{lin}} H \sin(2\varphi) + p_{T,x} p_{\gamma}^{\text{circ}} F \\ A_{\Sigma}(\phi) &:= \frac{1}{p_{\gamma}^{\text{lin}}} \frac{\sigma_{\uparrow}^{\perp} + \sigma_{\downarrow}^{\perp} - \sigma_{\downarrow}^{\parallel} - \sigma_{\downarrow}^{\parallel}}{\sigma_{\uparrow}^{\perp} + \sigma_{\downarrow}^{\perp} + \sigma_{\downarrow}^{\parallel} + \sigma_{\downarrow}^{\parallel}} = \frac{1}{p_{\gamma}^{\text{lin}}} \frac{\sigma_{\bot}^{\perp} - \sigma_{\parallel}^{\parallel}}{\sigma_{\bot} + \sigma_{\parallel}^{\parallel}} = \Sigma_{B} \cos(2(\alpha - \phi)) \\ A_{T}(\phi) &:= \frac{1}{p_{T}} \frac{\sigma_{\uparrow}^{\parallel} + \sigma_{\uparrow}^{\perp} - \sigma_{\downarrow}^{\perp} - \sigma_{\downarrow}^{\perp}}{\sigma_{\uparrow}^{\parallel} + \sigma_{\uparrow}^{\perp} - \sigma_{\downarrow}^{\parallel} - \sigma_{\downarrow}^{\perp}} = \frac{1}{p_{T}} \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}^{\perp} + \sigma_{\downarrow}^{\parallel} + \sigma_{\downarrow}^{\parallel}} = d \cdot T \sin(\beta - \phi) \\ A_{P,H}(\phi) &:= \frac{1}{p_{T}} \frac{\sigma_{\uparrow}^{\perp} - \sigma_{\downarrow}^{\perp} - \sigma_{\uparrow}^{\parallel} - \sigma_{\downarrow}^{\parallel} + \sigma_{\downarrow}^{\parallel}}{\sigma_{\uparrow}^{\perp} + \sigma_{\downarrow}^{\perp} + \sigma_{\downarrow}^{\parallel} + \sigma_{\downarrow}^{\parallel}} = d \cdot P \cos(2(\alpha - \phi)) \sin(\beta - \phi) \\ &\quad + d \cdot H \sin(2(\alpha - \phi)) \cos(\beta - \phi) \end{aligned}$$

$$\mathcal{A}_{\mathsf{F}}(\phi) := \frac{1}{p_{\mathsf{T}} p_{\gamma}^{\mathsf{circ}}} \frac{\sigma_{\uparrow}^{-+} \sigma_{\downarrow}^{-n} - \sigma_{\downarrow}^{--} - \sigma_{\uparrow}^{-n}}{\sigma_{\uparrow}^{++} \sigma_{\downarrow}^{+h} + \sigma_{\downarrow}^{+h} + \sigma_{\uparrow}^{+h}} = d \cdot \mathsf{F} \cos(\beta - \phi)$$

Photon beam flux

- tagged energy range: 230 MeV 1448 MeV
- 25 tagger channels of new tagger can be switched off
- first channel is run at 2.5 MHz
- $\epsilon_{\text{tagg}} = 0.27$ for 2 mm collimator
- total photon flux in tagged range: $\sim 5\cdot 10^7~\text{s}^{-1}$

TPWA with existing data for $p\pi^0$

Truncated PWA performed for $E_{\gamma} = (280 - 420)$ MeV for $p\pi^0$ using $\sigma_0, \Sigma, T, P, F$

- · Observable with lowest statistics dictates energy binning
- The polarization observable P is limiting factor for analysis
- Error bars of P in the range of 40-100%

TPWA with data for $p\pi^0$

Truncated PWA was performed also between 683 MeV - 916 MeV using 7 observables ($\sigma_0, \Sigma, T, P, H, G, E$) using mostly CBELSA/TAPS data for $p\pi^0$ (Y. Wunderlich, PhD thesis)

 We expect to have 8 observables for TPWA (σ₀, Σ, T, P, H, F, G, E) for a large energy range of 230 MeV - 830 MeV with comparable energy binning and angular coverage

MAMI

- MAMI beam energy: 1557 MeV (MAMI-C)
- MAMI beam polarization: long. polarized

Photon beam

- tagged energy range: 230 MeV 1448 MeV
- radiator: diamond
- photon beam pol.: elliptically pol. (circular and linear)

Equipment

- detectors: Crystal Ball, TAPS, PID, MWPCs, Cherenkov
- target: frozen spin butanol and carbon(+He)
- trigger: CB Esum OR (BaF₂ M1+ vetoed by C)

- $p\pi^0$ and $p\eta$ can be easily selected (previous G/E beamtime)
- Crystal Ball and TAPS are needed to detect the two decay photons $\left(+p\right)$

• low background: $\leq 2\%~(p\pi^0)$ and $\leq 6\%~(p\eta)$

$\Delta E - E$ spectra (PID, TAPS vetoes)

PID and TAPS vetoes information not necessarily needed for $p\pi^0$ and $p\eta$

Reconstruction of $n\pi^+$ (Missing mass spectra)

- $E_{\gamma} <$ 450 MeV only π^+ det. sufficient
- $E_{\gamma} >$ 450 MeV both π^+ and n needed

900 1000 1100

mx [MeV]

- PID, MWPCs and TAPS vetoes needed
- $\Delta E_{\text{PID}} E_{\text{CB}}$ spectra after carbon subtraction

Reconstruction and detection efficiency

Trigger configuration for $ho\pi^0$

• Optimal trigger configuration: CBEsum: 80-120 MeV (TAPS LED1: 80-120 MeV)

Trigger configuration for $p\eta$

• Optimal trigger configuration: CBEsum: 150-200 MeV (TAPS LED1: 150-200 MeV)

Trigger configuration for $n\pi^+$

• Optimal trigger configuration: CBEsum: 40-50 MeV, TAPS LED1: 40-50 MeV

Trigger configuration for $n\pi^+$

• Optimal trigger configuration: CBEsum: 40-50 MeV, TAPS LED1: 40-50 MeV

both
$$\pi^+$$
, n det., 230 MeV $\leq E_{\gamma} \leq$ 830 MeV

both π^+ , n det., 230 MeV $\leq E_{\gamma} \leq$ 830 MeV

