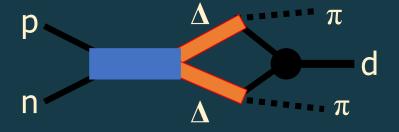
Searching for the d* in photoreactions on transversely polarized deuterons

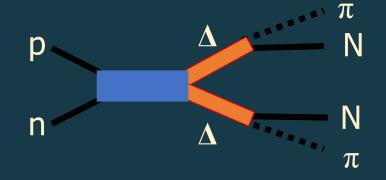
Dan Watts Mikhail Baskanov, Michael Ostrick, ...

Overview

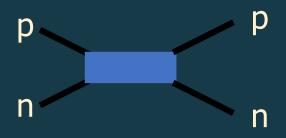
- Evidence from pn scattering
- EM properties recent MAMI results
- o d* theory
- o Potential added impact: Neutron stars, DM candidate
- Opportunities with nucleon polarisation observables

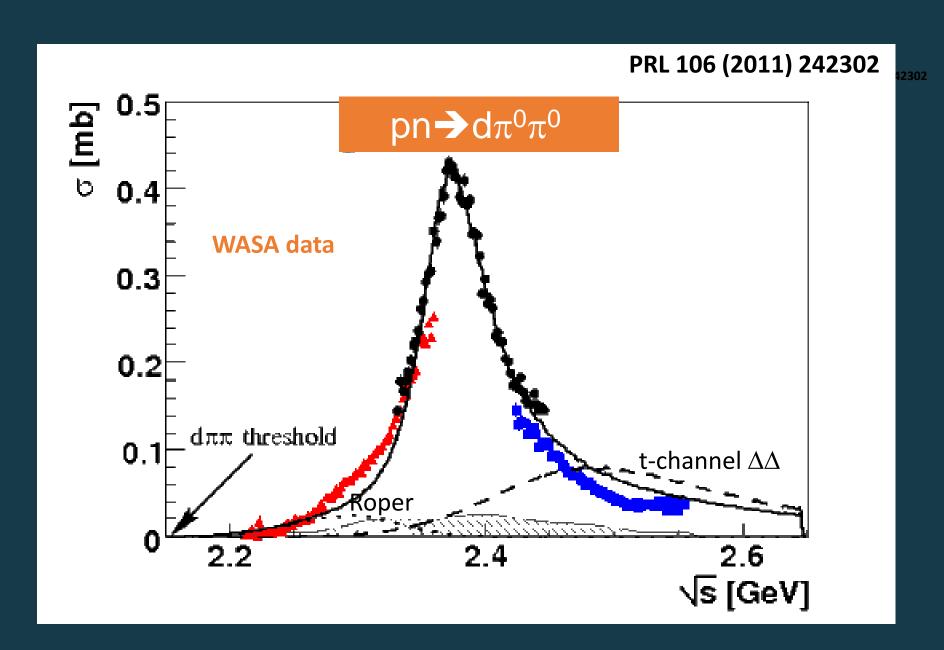


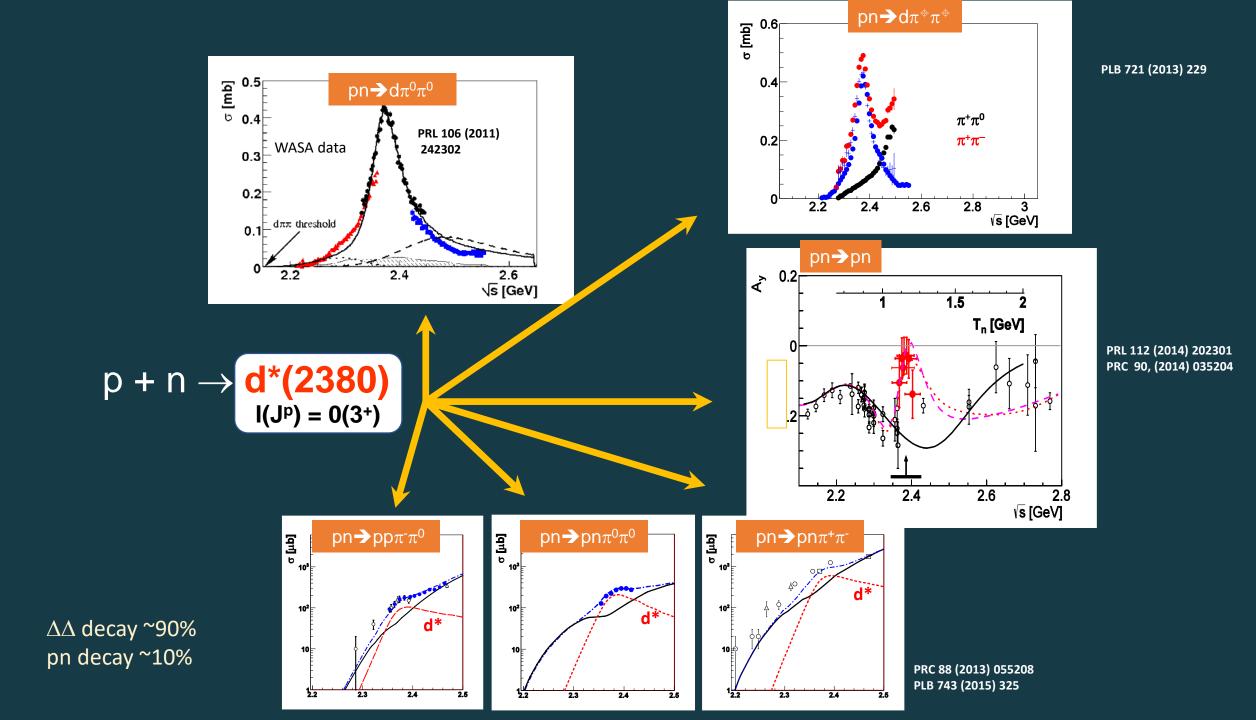
The d*(2380) in pn scattering



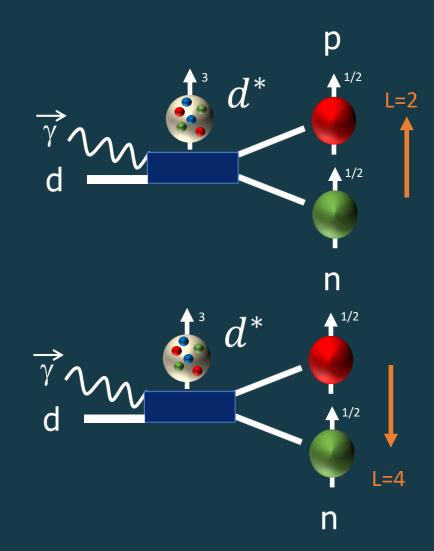
Nucleon scattering with large acceptance


• pn \rightarrow d* $\rightarrow \Delta\Delta \rightarrow d\pi\pi$

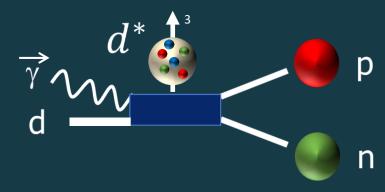




d*(2380) signals



d* decays to pn


• High partial waves in decay to a proton-neutron final state (J=3)

90% of cases this is via the ${}^{3}D_{3}$ partial wave (L = 2, nucleon spins and L all aligned)

10% of cases via the ³G₃ partial wave (L = 4, nucleon spins aligned, spin and L anti-aligned).

Deuterium photodisintegration (Σ)

- First detailed measurement in region of d*
- Good agreement with sparse existing data
- Almost complete acceptance amenable to (truncated) PWA

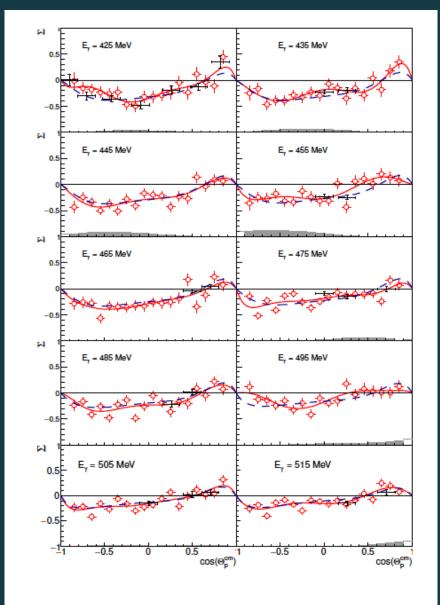


Figure 2: (Color online) Beam-spin asymmetry (Σ) results from this experiment (red open circles) in comparison with previous results (black crosses) [30, 31, 32]. The corresponding systematic uncertainties are depicted as shaded bars on the bottom. Energy independent (energy dependent) $a_l P_l^2$ fits are shown as solid red(dashed blue) lines (see text).

Σ decomposition

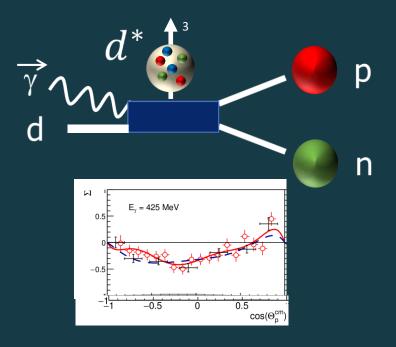
$$\sigma_1 = \Sigma(\Theta, E_{\gamma}) \cdot \sigma(\Theta, E_{\gamma})$$

$$\frac{\sigma_1}{\sigma_{\text{tot}}} = \sum_{l=2}^{7} a_l P_l^2.$$

Discrete gaussian sampling method 3 gaussians centroids 420,520,620 width 100 MeV

 $a_6 \sim d_1 |^3 G_3(M3)|^2 + \cdots$

 $+d_i|^3D_3(M3)|^3G_3(M3)|\cos\delta_i + \cdots$

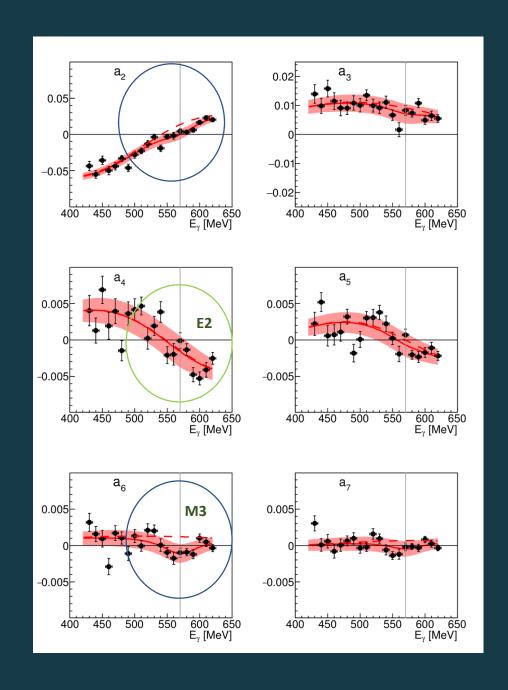

2 methods: Single energy & energy dependent (smooth functions for a_l)

Additional term: BW, mass 2380 MeV, width=70 MeV, arbitrary strength

Pure M3 should manifest in a₆ but not a₄

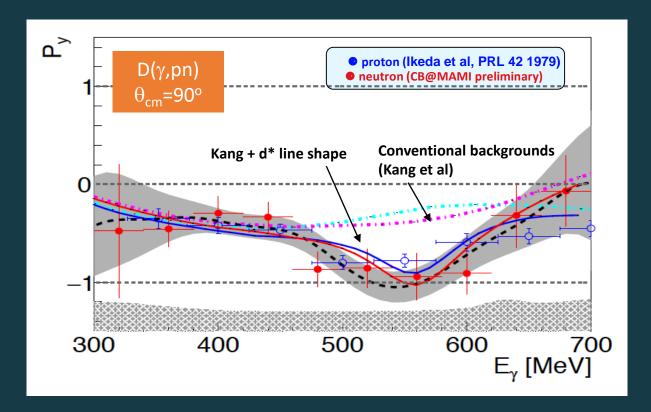
Pure E2 should manifest in a_4 but not a_6 $+ \frac{d_j|^3 D_3(E2)||^{2S+1}L \ge 4_J(E4)|\cos\delta_j + \cdots}{(E2 \text{ may contribute in } a_6 \text{ only with interference with higher multipoles E4 or higher}$

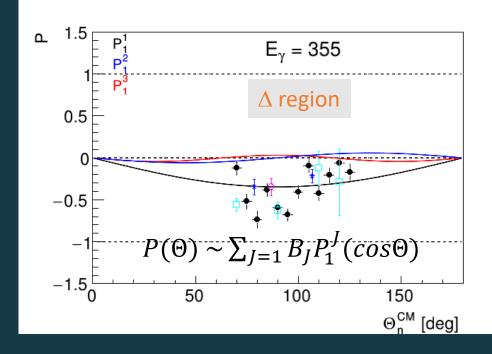
Deuterium photodisintegration (Σ)

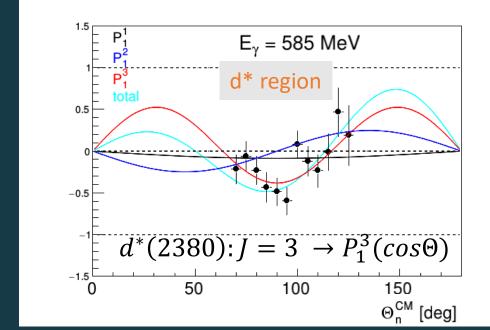


$$\Sigma \sim \sum_{l=2} a_l P_l^2(cos\Theta)$$

H.Ikeda et al., NPB172, 509, (1980)

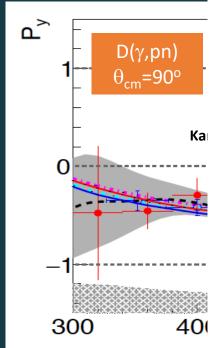

E2 transition \Rightarrow small M3 transition \Rightarrow dominant

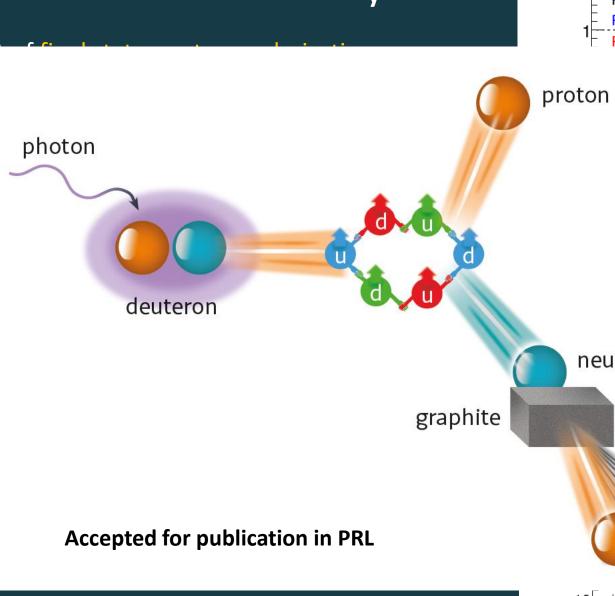

Consistent with $d^*(2380)$ as a compact object

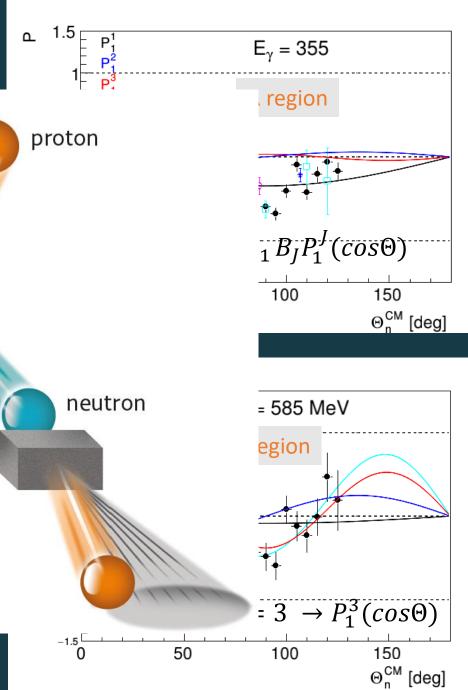


Deuterium photodisintegration (P_v)

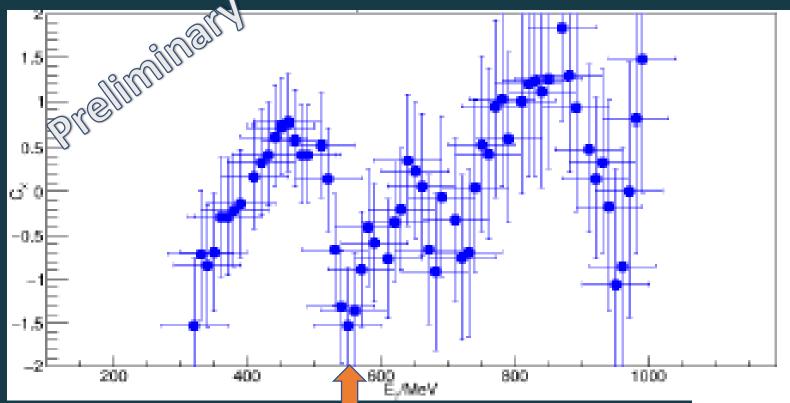
- o 1st measurement of final state neutron polarisation
 - -> Both p and n highly polarised in region of d*!
- \circ θ_{CM} dependence consistent with spin 3

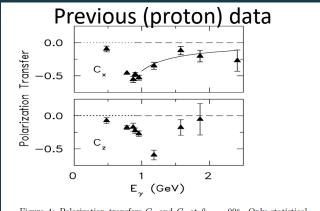





Deuterium photodisintegration (P_v)

1st measuremer
 -> Both p and n


 \circ $\theta_{\sf CM}$ dependence

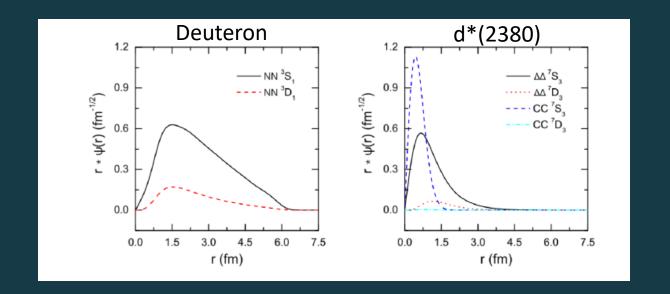


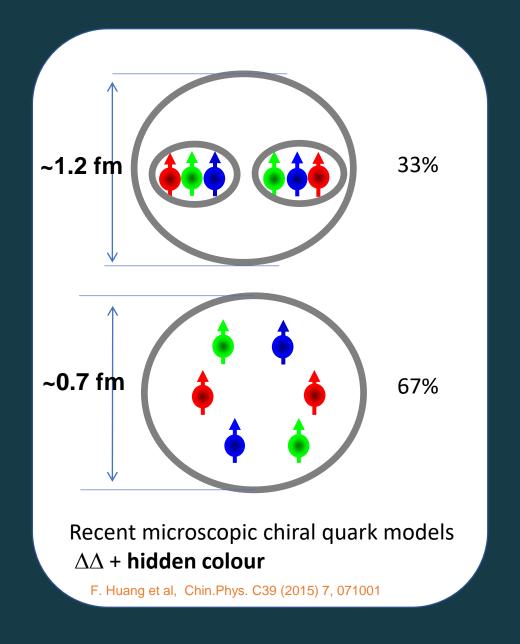
C_x* for neutron final state

- Indications of strong polarisation
 transfer in region of d*
- Caveat: approx. (n,p) analyzing power used in analysis

Figure 4:	Polarization t	ransfers C_x	and C_z a	$t \theta_{cm} =$	90°.	Only	statistical
uncertaint	ties are shown.	The curve	is describe	d in the	text.		

Combination of Cx* and P

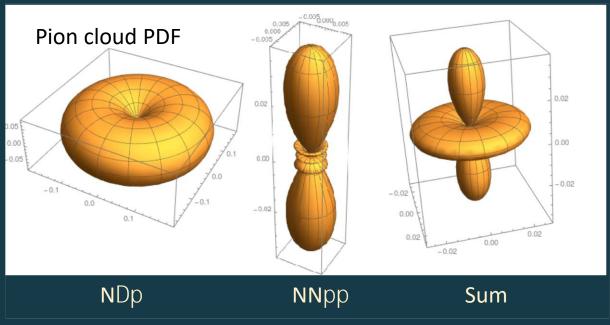

-> real and imaginary parts of same amplitude combination


	defined in Table 0.j				
Observable	Structure function	Helicity amplitude combination			
$\overline{p_y}$	$R_T(y)$	$2\operatorname{Im}\sum_{i=1}^{3} \left[F_{i+}^{*} F_{(i+3)-} + F_{i-} F_{(i+3)+}^{*} \right]$			
T	$R_T(\mathrm{Im}T_{11})$	$2\operatorname{Im} \sum_{i=1}^{2} \sum_{j=0}^{1} \left[F_{(i+3j)+} F_{(i+3j+1)+}^{*} + F_{(i+3j)-} F_{(i+3j+1)-}^{*} \right]$			
Σ	R_{TT}	$2\operatorname{Re}\sum_{i=1}^{3}(-)^{i}\left[-F_{i+}F_{(4-i)-}^{*}+F_{(3+i)+}F_{(7-i)-}^{*}\right]$ $2\operatorname{Im}\sum_{i=1}^{3}(-)^{i}\left[-F_{i+}F_{(7-i)+}^{*}+F_{i-}F_{(7-i)-}^{*}\right]$			
T_1	$R_{TT}(y)$	$2\operatorname{Im}\sum_{i=1}^{3}(-)^{i}\left[-F_{i+}F_{(7-i)+}^{*}+F_{i-}F_{(7-i)-}^{*}\right]$			
$C_{x'}$	$R_T(x')$	$2\operatorname{Re}\sum_{i=1}^{3} \left[F_{i+}^{*} F_{(i+3)-} + F_{i-} F_{(i+3)+}^{*} \right]$			
$C_{z'}$	$R_T(z')$	$\sum_{i=1}^{6} \left\{ F_{i+} ^2 - F_{i-} ^2 \right\}$			
$O_{x'}$	$R_{TT}(x')$	$2\operatorname{Im}\sum_{i=1}^{3}(-)^{i+1}\left[F_{i+}F_{(7-i)+}^{*}+F_{i-}F_{(7-i)-}^{*}\right]$			
$O_{z'}$	$R_{TT}(z')$	$2\operatorname{Im}\sum_{i=1}^{3}(-)^{i+1} \left[F_{i+} F_{(4-i)-}^* + F_{(3+i)+} F_{(7-i)-}^* \right]$			

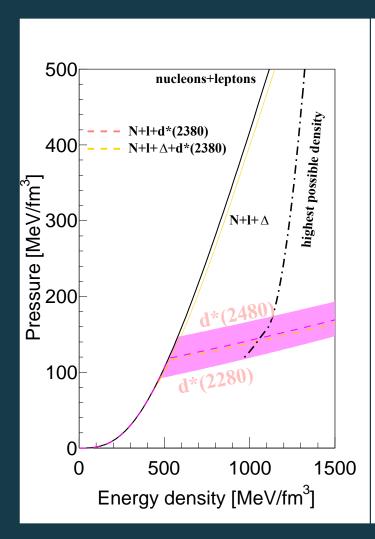
The d*(2380) in models

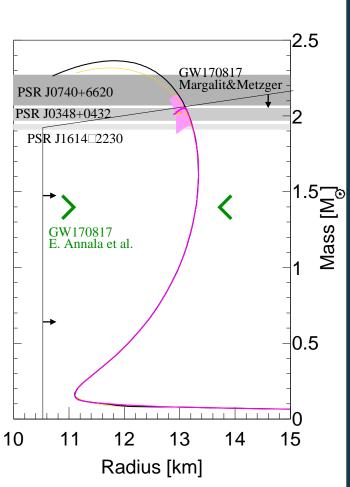
Any quark model with confinement and one gluon exchange *inevitably* predicts a 6-quark object with $(I)J^P=(0)3^+$

T Goldman et. al. Phys. Rev. C 39, 1889 (1989)

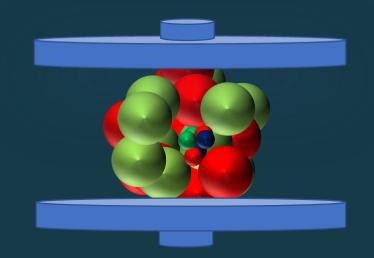


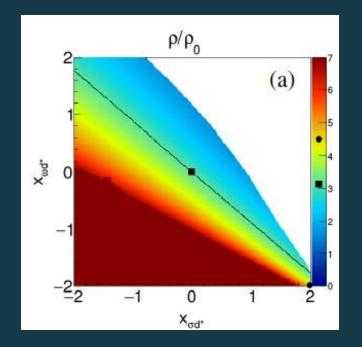
d* in pion cloud model


 \circ EM properties determined in simple overlapping Δ pion cloud model:



- \circ EQM -> $\Delta\Delta$ no contribution $N\Delta\pi \ , \ NN\pi\pi \ \sim equal \ contribution \ but \ opposite \ sign \ -> \ cancellation$
- \circ MOM -> $\Delta\Delta$ no contribution N $\Delta\pi$, NN $\pi\pi$ ~equal contribution but same sign

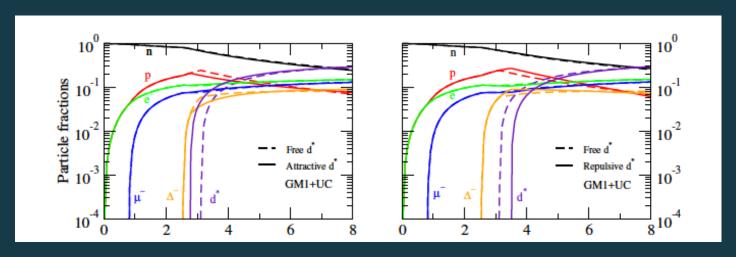

The d*(2380) in neutron stars



o d* -> forms copiously above $2.5\rho_0$ ->~20% d* at centre of heavy stars

- Star mass limit around 2.1M_o
- o d* in medium an important topic

More d*(2380) in neutron stars

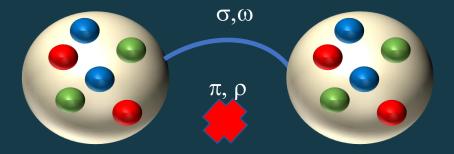


Neutron star matter equation of state including d^* -hexaquark degrees of freedom

A. Mantziris^{1,2}, A. Pastore¹, I. Vidaña³, D. P. Watts¹, M. Bashkanov¹, and A. M. Romero¹

- Department of Physics, University of York, Heslington, York, Y010 5DD, United Kingdom
- ² Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom
- 3 INFN Sezione di Catania, Dipartimento di Fisica "Ettore Majorana", Università di Catania, Via Santa Sofia 64, I-95123 Catania, Italy

d* in medium (nuclei) crucial -> Mihai's thesis

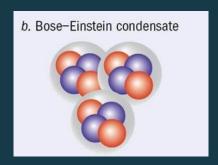


A&A, under review arxiv:2002.06571

The d*(2380) hexaquark and dark matter

Many body d*(2380) systems

o d* hexaquark - a new compact, bosonic and isoscalar form of light quark matter



Its a boson - can the d* form a Bose-Einstein condensate ?

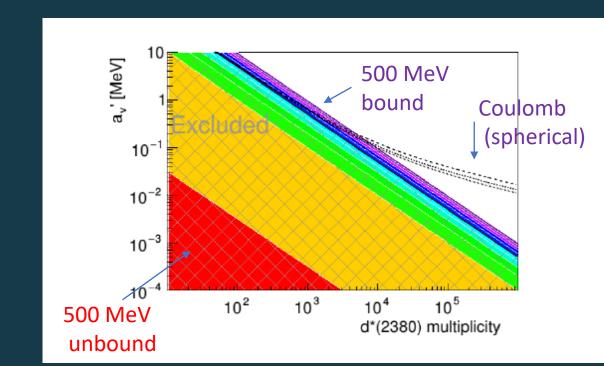
The Hoyle state – a condensate of alpha

- The Hoyle state of ¹²C (7.65 MeV) crucial in nucleosynthesis
- α is also an isoscalar, bosonic object
 -> analogous to the d* (but much larger)
- The Hoyle state properties reproduced remarkably well assuming it is a dilute Bose-Einstein condensate of 3 alpha particles.

70% condensed state with 30% of time scattered out from interactions

Alpha-Particle Condensate Structure of the Hoyle State: where do we stand?

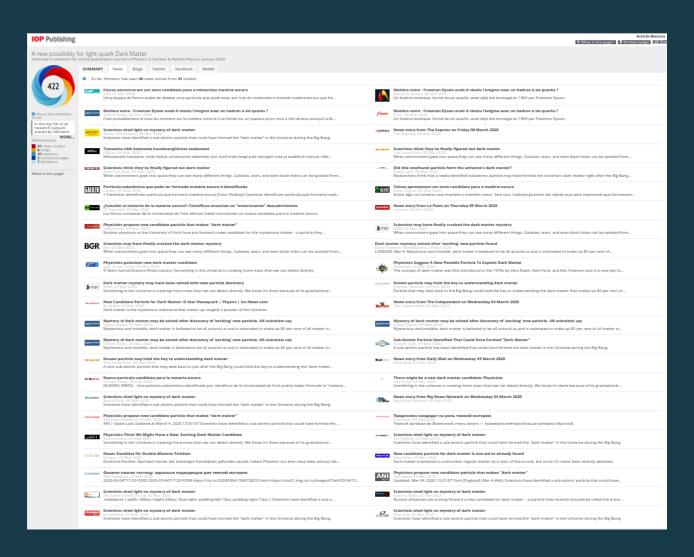
The d* condensate?


- The Binding Energy of a condensate can be calculated as a function of d* multiplicity
- Account for different scaling of binding and Coulomb terms (common wavefunction for all particles).
 Surface term not relevant for condensate linear chain configuration
 - -> Vary volume coefficient (reflecting the d*-d* interaction potential) over physical ranges

Standard nuclei

$$B_{LD}/A = a_v - a_s \cdot \frac{1}{A^{1/3}} - a_c \cdot \frac{Z(Z-1)}{A^{4/3}}$$

d* condensate


$$B/D = a'_v \cdot (D-1) - a'_c \cdot \frac{(D-1)}{D}; \quad a'_c[MeV] = 0.064 \cdot \frac{\rho}{\rho_0}$$

Bashkanov, Watts - JPhysG Letters 47, 3, 03LT01, (2020)

A new possibility for light-quark Dark matter

- The Independent, Daily Mail, Daily Express, Newsweek.... 40+ newspapers an journals all over the globe.
- 12k downloads a day, 15k+ downloads total.

The proposed programme with polarised deuteron targets

Possible beam-target D(γ,pn) observables

Longitudinal target polarisation

$$T_{10}^{c}(-E) \frac{d\sigma_{0}}{d\Omega_{p}} = \frac{1}{2} \sum_{sm_{s}} (|t_{sm_{s}11}|^{2} - |t_{sm_{s}1-1}|^{2})$$

$$T_{10}^{l}(G) \frac{d\sigma_{0}}{d\Omega_{p}} = \Im m \sum_{sm_{s}} (t_{sm_{s}11}^{*} t_{sm_{s}-11})$$

Circular γ-polarisation

Linear γ-polarisation

Transverse target polarisation

$$T_{11}^{0}(-T)\frac{d\sigma_{0}}{d\Omega_{p}} = \Im m \sum_{sm_{s}} (t_{sm_{s}1-1}^{*} t_{sm_{s}10} + t_{sm_{s}10}^{*} t_{sm_{s}11})$$

$$T_{11}^{c}(-F)\frac{d\sigma_{0}}{d\Omega_{p}} = -\Re e \sum_{sm} (t_{sm_{s}1-1}^{*} t_{sm_{s}10} + t_{sm_{s}10}^{*} t_{sm_{s}11})$$

$$T_{11}^{l}\frac{d\sigma_{0}}{d\Omega_{p}} = \Im m \sum_{sm_{s}} (t_{sm_{s}1-1}^{*} t_{sm_{s}-10})$$

$$T_{1-1}^{l}\frac{d\sigma_{0}}{d\Omega_{p}} = -\Im m \sum_{sm_{s}} (t_{sm_{s}11}^{*} t_{sm_{s}-10})$$

Unpolarised

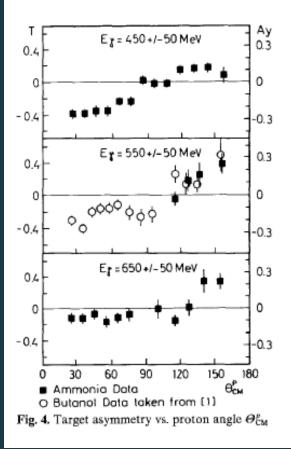
Circular γ -polarisation

Linear γ-polarisation

Linear γ-polarisation

Photodisintegration of polarized deuterons – measurement of angular distributions at $E_v = 450$, 550 and 650 MeV

K.H. Althoff, G. Anton, B. Bock¹, D. Bour, R. Dostert², P. Erbs, T. Jahnen, O. Kaul³, E. Kohlgarth, B. Lücking⁴, D. Menze, W. Meyer, E.P. Schilling, W.J. Schwille, D. Sundermann⁵, W. Thiel, D. Thiesmeyer⁶ Physikalisches Institut der Universität Bonn, Nussallee 12, D-5300 Bonn 1, Federal Republic of Germany


Received 14 February 1989

$$T = \frac{3}{2} \cdot \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_0 + \sigma_-}$$

Significant improvement In data quality possible at MAMI

$$Z = (-2) \cdot \frac{\sigma_+ + \sigma_- - 2\sigma_0}{\sigma_+ + \sigma_0 + \sigma_-}$$

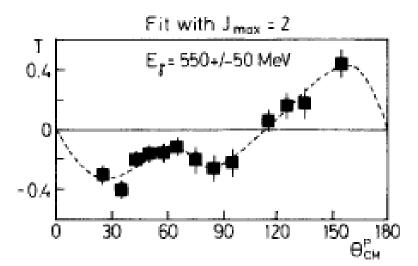
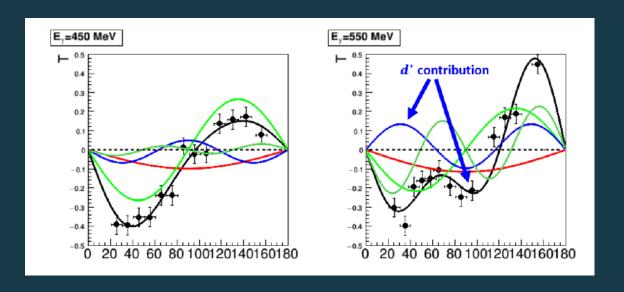



Fig. 6. Angular distribution at 550 MeV fitted with angular momentum $J_{\text{max}} = 2$

Taken as contribution of higher multipoles!

Expected sensitivity

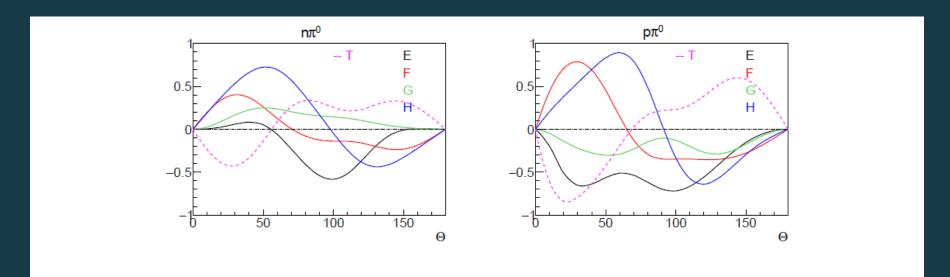
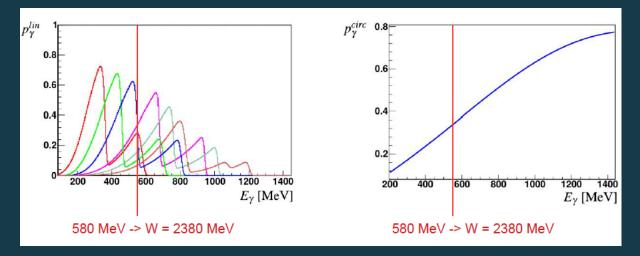



Figure 6: MAID predictions for photoexcitation of the $N^*(1680)$ (along with background from Born terms only). The predictions of various single- and double-polarisation observables for the $n\pi^0$ reaction (left) and $p\pi^0$ reaction (right) are shown. Photon energy = 1035 MeV (W=1680 MeV).

Mainz MAID: $N^*(1680) \frac{5}{2}^+$ - same multipoles (E2,M3) as d*

Count rate estimate

Measure all 4 transverse target asymmetries

O Stat accuracy $\delta A^{\sim}0.01$ for ±15 MeV bin in d* region, $P_{T}^{\sim}0.7$, $P_{\gamma}^{\sim}0.4$

$$N_{tot} = \frac{1}{P_T^2 \cdot P_{\gamma}^2 \cdot \delta A^2}$$

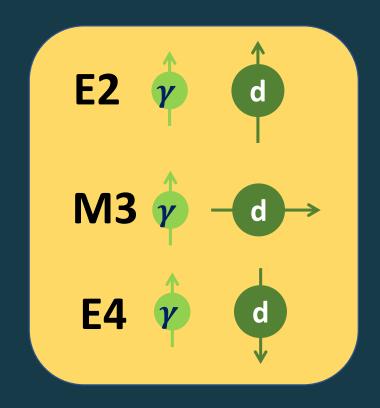
-> requires ~100k events bin-1 (good angular binning required)

Event rate = Beam intensity x tag eff x Number nuclei x efficiency x cross section =
$$1 \text{ s}^{-1}$$

Beam time ~ 7 weeks

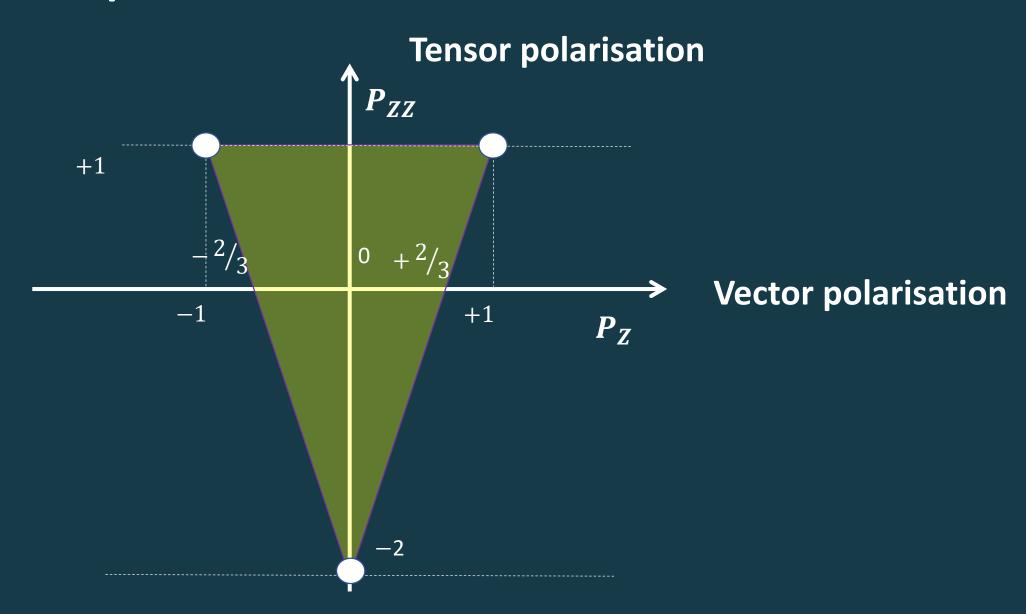
Required beamtime

		Table 3: Expected beamtime length				
Target	Radiator	Beam polarisation	Target polarisation	days		
D-butanol	Diamond		1	7		
D-butanol	Diamond		↓	7		
D-butanol	Diamond	Ï	1	7		
D-butanol	Diamond	\perp		7		
D-butanol	Moeller	\odot/\otimes	1	3		
D-butanol	Moeller	\odot/\otimes	₩	3		
Carbon	Diamond		_	3		
Carbon	Diamond	Ţ	_	3		
				6 weeks		


+ 1 week to setup/maintain the target

What will we learn?

- Clean separation of the d*(2380) from background channels
 - Precise knowledge of the d* photo coupling
- o d* can be excited in E2, M3 or E4 transitions
 - E2 ←→ Electric Quadrupole moment
 - M3 → Magnetic Octupole moment
 - E4 ←→ Electric Hexadecapole moment


Size and structure of the d*

Summary

- MAMI can lead the way in providing key data to elucidate the d*(2380) with EM probes
- Important ramifications for hadron physics potentially for astrophysics
- Campaign with polarized deuteron target would provide T and a trio of beam-target observables

Deuteron polarisation

Extracted (approximate!) d* cross section from σ and Σ

Coefficients: assuming M3 dominance!

$$a_2 = 0.375|M3(^3D_3)|^2 + 0.108|M3(^3D_3)||M3(^3G_3)|$$
$$\cdot \cos(\delta_{^3D_3} - \delta_{^3G_3}) + 0.391|M3(^3G_3)|^2$$

$$a_4 = 0.014|M3(^3D_3)|^2 + 0.021|M3(^3D_3)||M3(^3G_3)|$$
$$\cdot \cos(\delta_{^3D_3} - \delta_{^3G_3}) + 0.017|M3(^3G_3)|^2$$

$$a_6 = 0.172|M3(^3D_3)||M3(^3G_3)|$$
$$\cdot \cos(\delta_{^3D_3} - \delta_{^3G_3}) + 0.025|M3(^3G_3)|^2$$

-> Use extracted even coefficients to estimate d* contribution

Similar order as suggested by structure in γ + D -> $d\pi^0\pi^0$

(d* coefficients only contribute to odd coefficients via Interference with other partial waves -> therefore assumed small)

Primordial production at the quark hadron phase transition

 DM/matter ratio calculated in general terms assuming Boltzmann distribution in QGP arxiv.org/abs/1805.03723

$$\Omega_{DM}/\Omega_{baryon} = \frac{7}{4}M_N(1-\frac{y_D}{M_N})^{3/2}e^{\frac{M_Ny_D}{T}}$$

y_D - d* binding energy (units of nucleon mass)

T - temperature

At QGP phase transition (0.16 GeV) a BE~300 MeV would produce measured DM ratio.

Achievable with d* condensate multiplicity >~1000

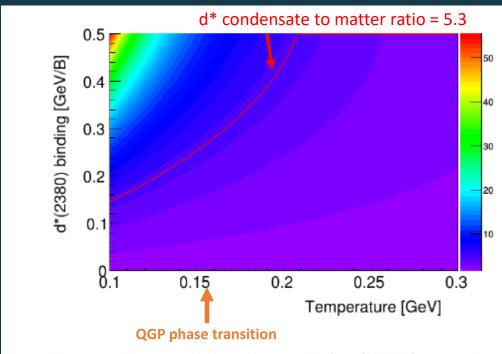


Figure 2. The primordial production of $d^*(2380)$ -BEC (expressed as a ratio to baryon matter) calculated as a function of binding energy and decoupling temperature. The red line shows the loci corresponding to the current experimental determination of the dark matter to matter ratio[33].

Signatures of d* condensates

 The (charged) chain condensates would attract electrons to become neutral objects (DFT calculations for linear chain configuration in progress)

 Breakup of a condensate "nucleus" would produce a characteristic decay spectrum

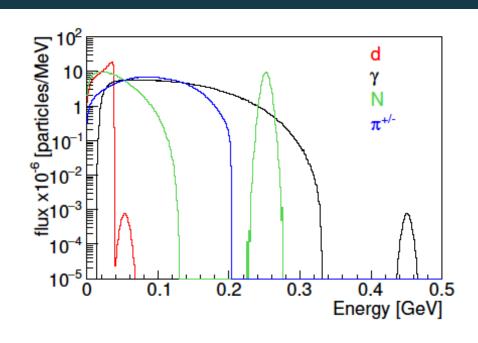


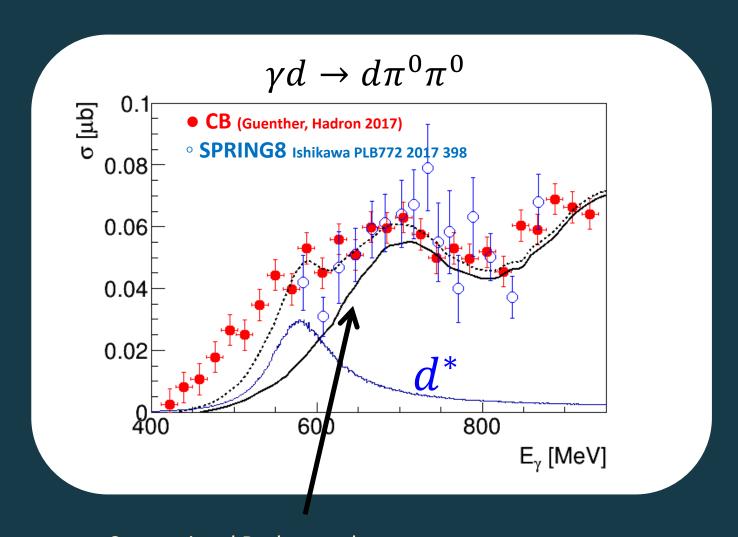
Figure 3. The $d^*(2380)$ -BEC decay spectrum, presented as a flux per $d^*(2380)$, per MeV of kinetic energy. The flux is separated into the contributions from gamma(black), nucleons(green), deuterons(red) and charged pions(blue).

Measurements of the P_{x'} component of neutron polarisation in the reaction γd→pn by linearly polarised photons in the energy range 0.3-0.5 GeV

To cite this article: F V Adamian et al 1988 J. Phys. G: Nucl. Phys. 14 831

The target asymmetry T:

$$T = \frac{3}{2} \cdot \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_0 + \sigma_-} \quad \text{with } -3/2 \le T \le 3/2. \tag{1}$$


The tensor asymmetry Z:

$$Z = (-2) \cdot \frac{\sigma_+ + \sigma_- - 2\sigma_0}{\sigma_+ + \sigma_0 + \sigma_-} \quad \text{with } -2 \le Z \le 4 \tag{2}$$

 σ_+ , σ_0 and σ_- are the differential cross sections of the process with pure deuteron states. σ_+ for example is the cross section with all deuterons parallel to the polarization axis, in our case the y-axis. The latter is given by the $\mathbf{k} \times \mathbf{q}$ -direction (\mathbf{k} photon- and \mathbf{q} pro-

Photoproduction of $d\pi\pi$ final state

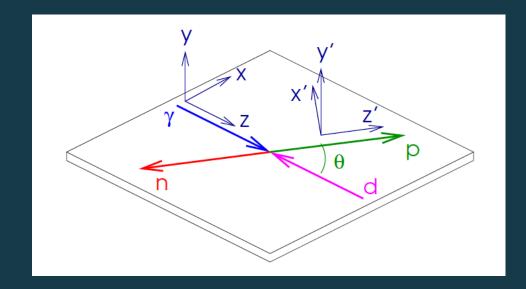
- Photoproduction kinematics challenging -> deuteron only detected at forward angles
- Active deuteron target
 prototype under construction

Conventional Background

M. Egorov, A. Fix, Nucl. Phys. A933 (2015) 104-113

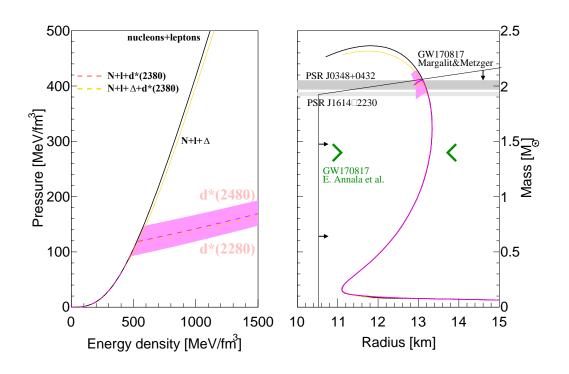
Polarization observables - disintegration

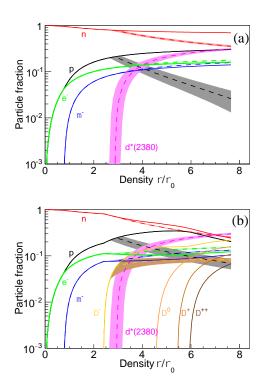
12 amplitudes – 23 independent observables


For the differential cross section in the cm frame one obtains

$$\begin{split} \frac{d\sigma}{d\Omega} &= \frac{d\sigma_0}{d\Omega} [1 + P_l^{\gamma} \Sigma^l(\Theta) \cos 2\Phi \\ &+ \sum_{I=1,2} P_I^d \{ \sum_{M \geq 0} (T_{IM}(\Theta) \cos(M(\Phi_d - \Phi) - \delta_{I1}\pi/2) \\ &+ P_c^{\gamma} T_{IM}^c(\Theta) \sin(M(\Phi_d - \Phi) + \delta_{I1}\pi/2)) d_{M0}^I(\Theta_d) \\ &+ P_l^{\gamma} \sum_{M=-I}^I T_{IM}^l(\Theta) \cos(\Psi_M - \delta_{I1}\pi/2) d_{M0}^I(\Theta_d) \} \} \;, \end{split}$$

where


$$\Psi_M = M(\Phi_d - \Phi) + 2\Phi$$
.


Observable	Structure function	Helicity amplitude combination
p_y	$R_T(y)$	$2\operatorname{Im}\sum_{i=1}^{3} \left[F_{i+}^{*} F_{(i+3)-} + F_{i-} F_{(i+3)+}^{*} \right]$
T	$R_T(\mathrm{Im}T_{11})$	$2\operatorname{Im}\sum_{i=1}^{2}\sum_{j=0}^{1}\left[F_{(i+3j)+}F_{(i+3j+1)+}^{*}+F_{(i+3j)-}F_{(i+3j+1)-}^{*}\right]$
Σ	R_{TT}	$2\operatorname{Re}\sum_{i=1}^{3}(-)^{i} \left[-F_{i+} F_{(4-i)-}^{*} + F_{(3+i)+} F_{(7-i)-}^{*} \right] 2\operatorname{Im}\sum_{i=1}^{3}(-)^{i} \left[-F_{i+} F_{(7-i)+}^{*} + F_{i-} F_{(7-i)-}^{*} \right]$
T_1	$R_{TT}(y)$	$2\operatorname{Im}\sum_{i=1}^{3}(-)^{i}\left[-F_{i+}F_{(7-i)+}^{*}+F_{i-}F_{(7-i)-}^{*}\right]$
$C_{x'}$	$R_T(x')$	$2\operatorname{Re}\sum_{i=1}^{3} \left[F_{i+}^* F_{(i+3)-} + F_{i-} F_{(i+3)+}^* \right]$
$C_{z'}$	$R_T(z')$	$\sum_{i=1}^{6} \left\{ F_{i+} ^2 - F_{i-} ^2 \right\}$
$O_{x'}$	$R_{TT}(x')$	$2\operatorname{Im}\sum_{i=1}^{3}(-)^{i+1}\left[F_{i+}F_{(7-i)+}^{*}+F_{i-}F_{(7-i)-}^{*}\right]$
$O_{z'}$	$R_{TT}(z')$	$2\operatorname{Im}\sum_{i=1}^{3}(-)^{i+1} \left[F_{i+} F_{(4-i)-}^{*} + F_{(3+i)+} F_{(7-i)-}^{*} \right]$

The density frontier – heavy stars and mergers

• d*(2380) may have very significant effect on heavy neutron stars and the physics of mergers. (Vidal, Bashkanov, DPW, Pastore)

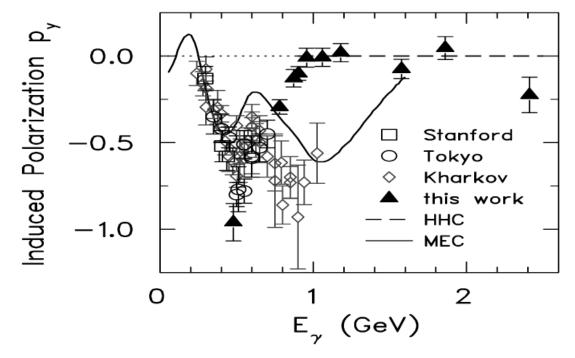


Figure 3: Induced polarization p_y in deuteron photodisintegration at $\theta_{cm}=90^\circ$. Only statistical uncertainties are shown. The curves are described in the text.

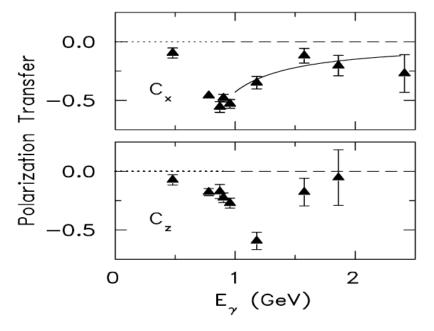
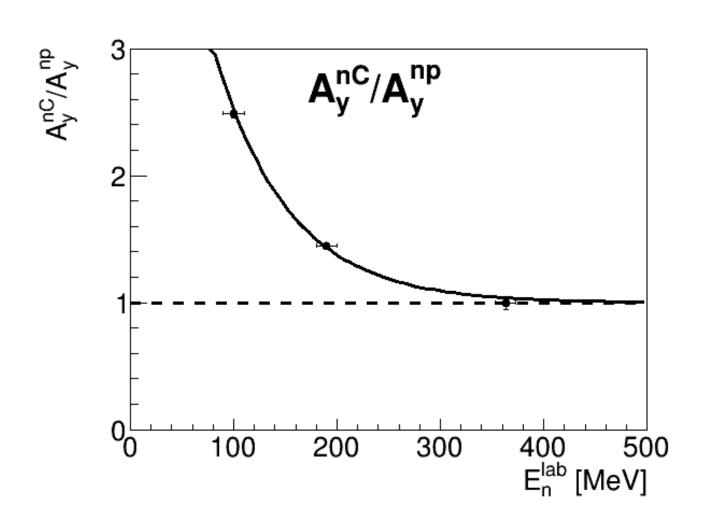


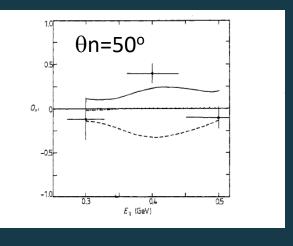
Figure 4: Polarization transfers C_x and C_z at $\theta_{cm}=90^\circ$. Only statistical uncertainties are shown. The curve is described in the text.

$d^*(2380)$ multipole expansion


$$\frac{M3}{E2} \sim \frac{\langle \Omega \rangle_{d \to d^*}}{\langle Q \rangle_{d \to d^*}} \sim \frac{\langle Q \rangle_{d \to d^*} \mu_{d \to d^*}}{\langle Q \rangle_{d \to d^*}} \sim M_d \omega_{\gamma}^2 \mu_{d \to d^*}$$

If $\mu_{\mathbf{d} \to d^*}$ is large the $d \to d^*$ M3 transition might be dominant

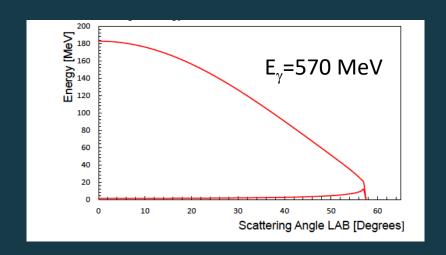
$$\mu_{d^*} \sim 7.6 \mu_N$$


Yubing Dong, Pengnian Shen, Zongye Zhang Phys.Rev. D 97, (2018), no.11, 114002

Neutron A_y on Carbon

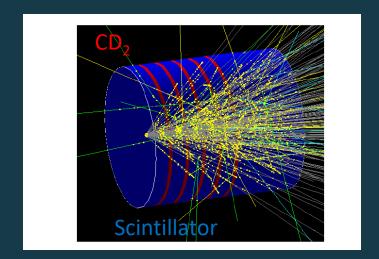
Measurements of the P_{x'} component of neutron polarisation in the reaction γd→pn by linearly polarised photons in the energy range 0.3-0.5 GeV

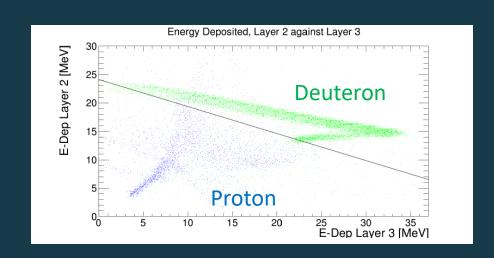
To cite this article: F V Adamian et al 1988 J. Phys. G: Nucl. Phys. 14 831



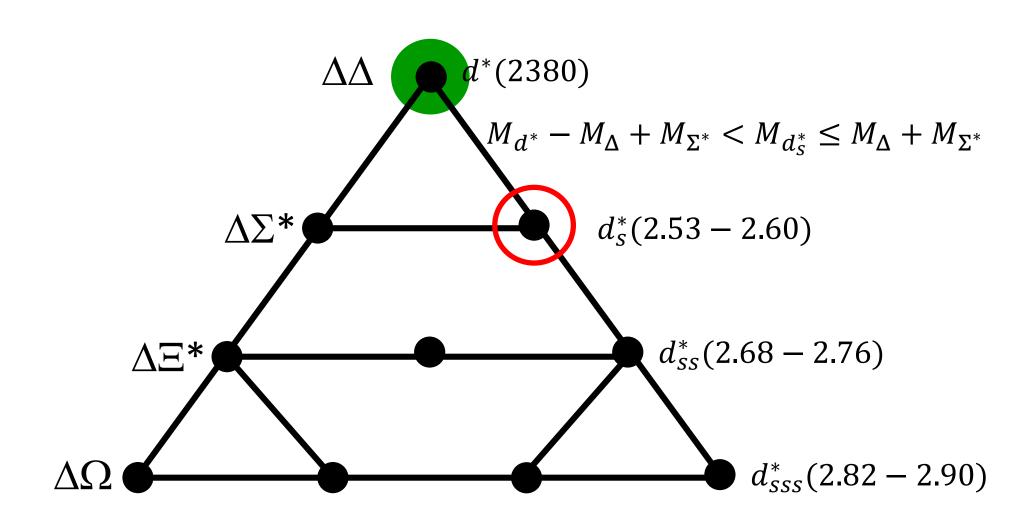
Active deuteron target?

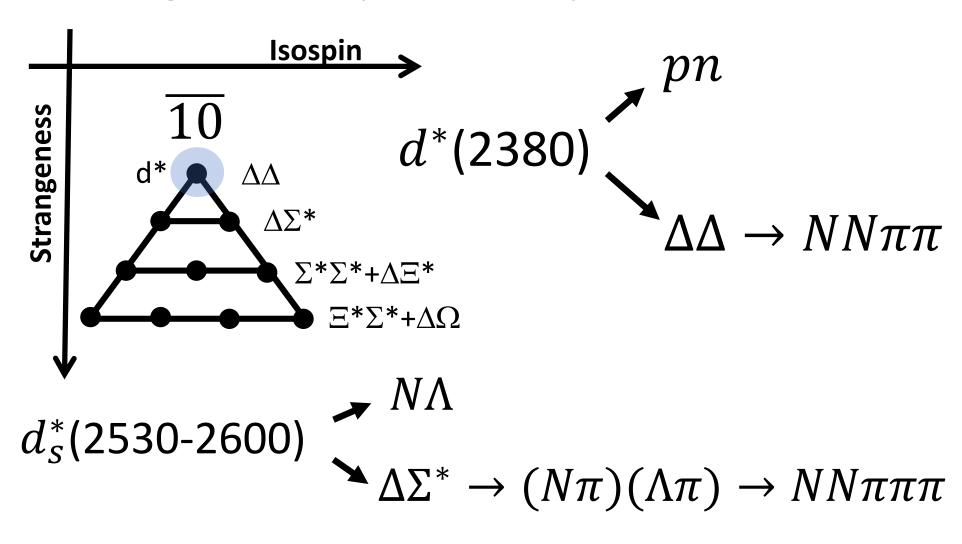
Detecting recoil deuteron in photoproduction of $d\pi\pi$ challenging -> e.g stops in cryogenic target for much of phase space


Active target prototype developed at UoY


Scintillator pixels interleaved with CD2 target material

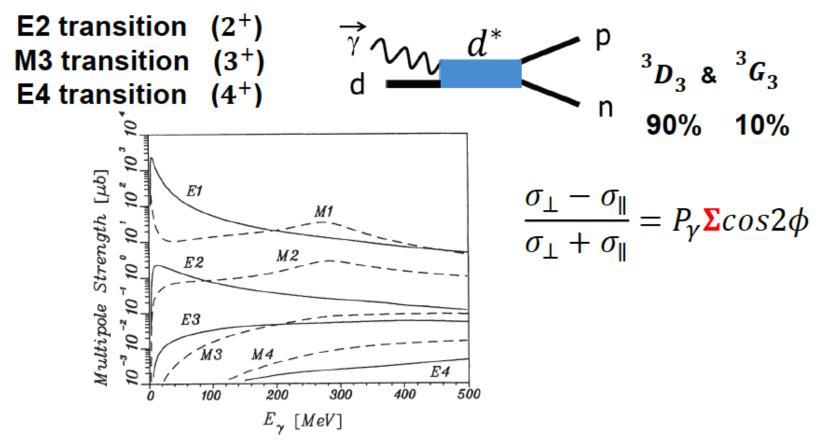
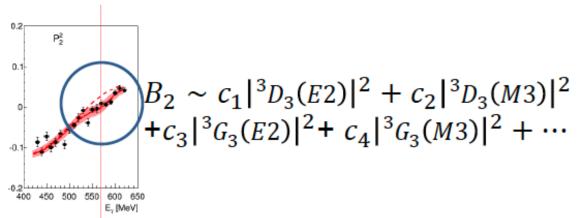
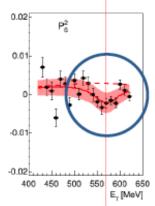
Tagging and separation of low energy Deuteron/spectator proton feasible

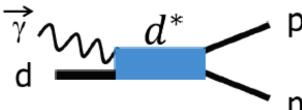

-> G4 simulation



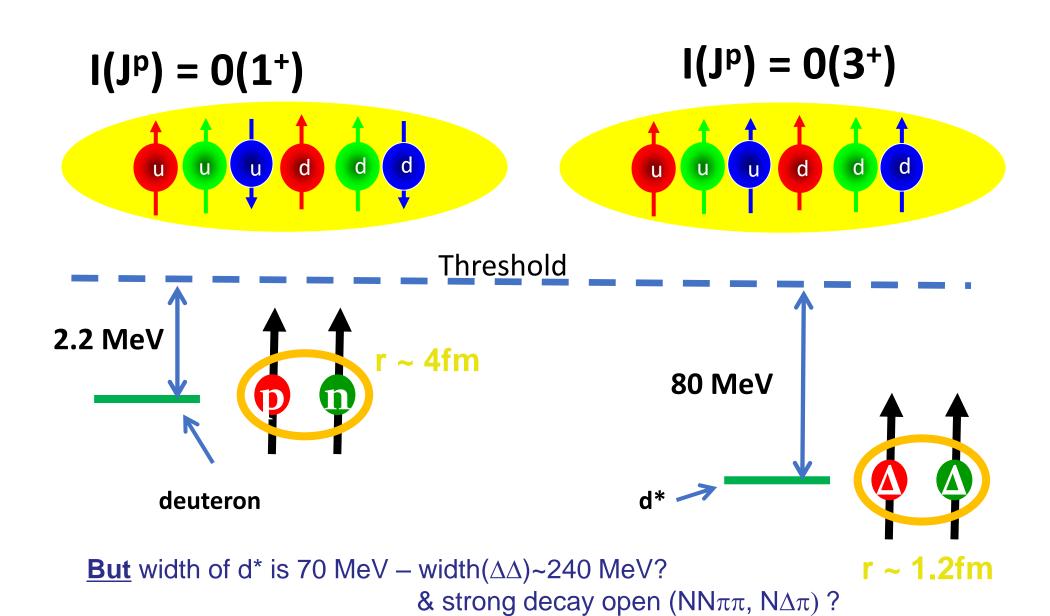
d*(2380) SU(3) multiplet

Strange Dibaryon decays

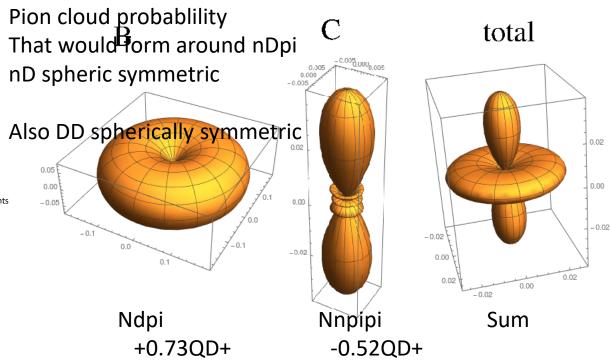




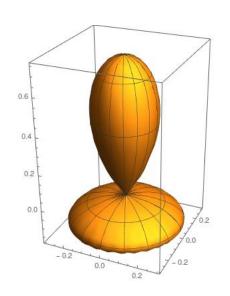

Fig. 7.1.3: Multipole strengths up to L=4 contributing to the total cross section with inclusion of MEC, IC and RC for the Bonn r-space potential.

$$\frac{\Sigma(\Theta)\sigma(\Theta)}{\sigma_0} \sim \sum_{J=2} B_J P_J^2(cos\Theta)$$



$$\begin{aligned} |B_6 \sim d_1|^3 G_3(M3)|^2 + \cdots \\ + d_i|^3 D_3(M3)||^3 G_3(M3)|\cos \delta_i + \cdots \\ + d_j|^3 D_3(E2)||^{2S+1} L \ge 4_J(E4)|\cos \delta_j + \cdots \end{aligned}$$


Magnetic M3 transition might be sizable


What is the d* - Deltaron hypothesis

d* shape

- Estimates made using simple pion cloud model.
- d* made from 2D spend part of time as nucleon plus pion pure quark DD component, NNpp component and NDpi components
- Enables estimate M3/E2 ratios and ind. strengths
- Indicates d* is spherical (electrical quadropole deformation small)
- However magnectic octupole deformation may be large (don't cancel)
- Octopole moment is quadropole x magnetic dipole
- For 2 cases magnetic dipole moment of oppositie sign (D0npi+ mag moment neut -2mu_b p = 3mu_b
- Nnpi Dpipi like (but more compact deuteron)NN is like deuteron therefre magnetic moment +1Mu b. The plot is a Y30 shape octupole.
- More polarization observables (long poalrised target with transeverse beam or transverse target circular beam), Ox, may help to experimentally determine these ratios M3/E2. This ratio is proportional to mag dipole moment of d* (cancellation)
- M3 prop octupole d* E2 quadropolle d*
- E2 photin spin up target L=1 in same direction 1- + 1+. 1- intrinsic spin 1- from angular givees 2+
- 2+ from E2 plus 1 from deut must be aligned t give 3+
- E4 1-L=1 in same direction gives 4+ E4 transition. 4+E4 and deuteron spin now in OPPOSite direction to get 3+
- Even if d* is not compact the E2 is small because of cancellations. But in this model it is small. Radii of above similar in size to single delta
- Label arbritary units probability density. Prefactors for use in calculation. Product of wavefunction with isospin factors.
- Uadropole deformation of delat from pion cloud only, but on lattic shown comes from guarks and has similar size starting rom just guarks.
- Doorwaay d* excited from d-wave of deuteron. Predictions give huge quadropole transition. Real cross section lot smaller. Therefore maybe not d-wave, maybe from 6q compinsnt. 300m. If 6q get 0.15% so this might be it. 6q still deformed has cloud like nucleon and delta.

