

ATCA Shelf Manager Controls & Monitoring Status of AtcaOpcUa server and Integration in DCS Applications

Paris Moschovakos, Piotr Nikiel, Stefan Schlenker

Outline

- Intro: ATLAS ATCA DCS Scheme
- Plans set in 14 xTCA Interest Group Meeting
 - Progress on AtcaOpcUa Server
 - Integration with WinCC OA
 - Integration with ATLAS FSM
 - Use cases in ATLAS
 - Conclusions

Introduction

Diagram from S. Schlenker DCS: Requirements Document for HL-LHC EDMS Id: 2276493 v.1

ATLAS Off-Detector Electronics Based on ATCA

Diagram from S. Schlenker DCS: Requirements Document for HL-LHC EDMS Id: 2276493 v.1

14th xTCA Interest Group Meeting - Plans

Plans from last year's xTCA meeting:

Plans

- Automatize common deployment procedures
 - including device discovery
 - o creation of the configuration file based on the discovered devices
- Expand device support and custom sensors to more sensor types
- Easy integration to WinCC OA with a dedicated framework component
 - fwAtca for ATCA OPC UA

14th xTCA Interest Group Meeting 10.05.2019

AtcaOpcUa Server

Why combining ATCA with OPC UA?

OPC UA

- focuses on communicating with industrial equipment and systems for data collection and control
- Open specification and various implementations available (free or commercial)
- Cross-platform
- Service-oriented architecture
- Integral information model, which is the foundation of the infrastructure necessary for information integration where vendors and organizations can model their complex data into an OPC UA namespace
- Current experience with OPC UA @CERN
 - Works natively with the tools used in Detector Control Systems
 - ATLAS DCS and BE-ICS developed a framework, quasar, for developing OPC UA servers
 - It is the standard prefered by the "big" vendors (e.g. CAEN, ISEG, Weiner, etc.) for their power supply devices
 - It is used by various custom devices in experiments used widely at CERN (ELMB, SoC)
 - CERN foresees to have support and provide maintenance on those solutions on the long term through the quasar framework

AtcaOpcUa Server for ShM management Basic Points

- A quasar OPC UA server for managing ATCA shelves via the shelf manager path based on the SNMP external interface to monitor/control activities using IPMI
- For "CERN-standard" **Pigeon Point** Shelf Managers (ShMM 500, ShMM 700R)
 - Compatible with xTCA
- The ATCA Software is template-based on the MIB and auto generated using Jinja2
- Provides automatic hardware discovery walking over the SNMP tree
 - Only existing entries are populated
 - Throttling traffic towards for specific sensor types

AtcaOpcUa Traffic Handling Improvements

ATCAs that are highly populated by sensors/IPMC/boards can congest IPMB towards the shelf manager.

- ~O(100) of variables can be handled smoothly for individual shelves
- That is one of the reasons for the second path (SoC)

To ensure smooth traffic

- A survey has been conducted within ATLAS ATCA shelves users to prioritize data relevant to DCS
 monitoring over excessive information and based on the feedback from the community in-server
 polling groups were used to categorize sensors (and their variables) with different priorities
- Support for a selection of advanced variables was introduced
- The server, while supporting all basic variables, by default populates the DCS-important ones during automatic discovery
- Introduced support for TELCO alarms which can capture and inform of emergency situations
 - Automatic actions based on alarming events should be done within-shelf manager using Platform Event Filtering mechanism

SNMP module for OPC UA

- An ongoing effort to provide a generalized C++ module has been initiated by Central DCS team
 that can be reused for various SNMP-based devices requiring control and monitoring using OPC
 UA solutions
- This module is **based on the AtcaOpcUa** server software backend experience
- The main motivation is to provide a commonalized way of interfacing to
 - Phase-II upcoming power supplies that use standard SNMP
 - the AC/DC power rectifier systems for ATCA shelves that are foreseen to be procured by centrally by CERN. It is actually part of CERN requirements
- Work-In-Progress in collaboration with BE-ICS to ensure long term maintenance

AtcaOpcUa Design Model Visualization

External Interface

IPMC and sub-detector specific hardware

- Generic representation of IPMC and sensors following the hardware representation
 - Sensors "belong" to IPMCs
- Any IPMC that conforms with the standard can be monitored
 - The connected custom sensors are also monitorable using their IPMC address and sequence number
- A sophisticated mechanism that distinguishes in-between types of sensors was developed
 - o temperatures, voltages, fans speed etc
 - sensor types enriched
 - mechanism to facilitate addition of ad-hoc types of sensors was introduced
- IPMC and sensors are automatically discovered and populated into the server

The AtcaOpcUa server in action

```
2020-03-02 09:34.40.416591 [MetaAmalgamate.cpp:3200, INF] StandardMetaData.Log configuration found in the configuration file, configur
2020-03-02 09:34.40.416661 [MetaAmalgamate.cpp:3133, INF] general non-component log level will be [INF]
2020-03-02 09:34.40.416743 [MetaAmalgamate.cpp:2578, INF] setting log level to [INF]
2020-03-02 09:34.40.416813 [MetaAmalgamate.cpp:3118, INF] no StandardMetaData.Log.ComponentLogLevels configuration found in the config
2020-03-02 09:34.40.416900 [MetaAmalgamate.cpp:3069, INF] configuration for logging component handle [0] name [CalcVars] using value
2020-03-02 09:34.40.417015 [MetaAmalgamate.cpp:2516, INF] setting component [name:CalcVars id:0] to level [INF]
2020-03-02 09:34.40.417101 [MetaAmalgamate.cpp:3219, INF] no StandardMetaData.SourceVariableThreadPool configuration found in the conf
2020-03-02 09:34.40.417763 [MetaAmalgamate.cpp:3236, INF] no StandardMetaData.Quasar configuration found in the configuration file, co
2020-03-02 09:34.40.417852 [MetaAmalgamate.cpp:3250, INF] no StandardMetaData.Server configuration found in the configuration file, co
2020-03-02 09:34.40.418049 [SnmpBackend.cpp:64, INF] [asmllc-stf0.cern.ch] Using SNMP version 2c
2020-03-02 09:34.40.438717 [CalculatedVariablesEngine.cpp:262, INF, CalcVars] #ParserVariables: 1181 #CalculatedVariables: 0 #Synchro
2020-03-02 09:34.40.439041 [CalculatedVariablesEngine.cpp:297, INF, CalcVars] Optimized(suppresed) 1181 ParserVariables not used in ar
2020-03-02 09:34.40.439104 [CalculatedVariablesEngine.cpp:262, INF, CalcVars] #ParserVariables: 0 #CalculatedVariables: 0 #Synchroniz
2020-03-02 09:34.40.439149 [QuasarServer.cpp:78, INF] Initializing Quasar server.
2020-03-02 09:34.40.441714 [opcserver.cpp:157, INF] Opened endpoint: opc.tcp://pcaticstest08.dyndns.cern.ch:48050
2020-03-02 09:34.40.441777 [OuasarServer.cpp:48, INF] Server main loop started!
```

Node Id	Display Name	Value	Datatype	Source Timestamp	Server Timestamp	
NS2 String myAtca01.IPMC92.idString	idString	Upper Fan Tray	String	9:38:28.522 AM	9:38:53.592 AM	Good
NS2 String myAtca01.IPMC92.Sensor10.idString	idString	Fan Tach 2	String	9:38:38.244 AM	9:39:25.453 AM	Good
NS2 String myAtca01.IPMC92.Sensor10.reading	reading	5400	Float	9:41:16.578 AM	9:41:16.578 AM	Good
NS2 String myAtca01.IPMC92.Sensor11.idString	idString	Fan Tach 3	String	9:38:38.738 AM	9:39:46.154 AM	Good
NS2 String myAtca01.IPMC92.Sensor11.reading	reading	5460	Float	9:40:17.874 AM	9:40:17.874 AM	Good
NS2 String myAtca01.IPMC92.Sensor9.idString	idString	Fan Tach 1	String	9:38:37.442 AM	9:40:10.623 AM	Good
NS2 String myAtca01.IPMC92.Sensor9.reading	reading	5460	Float	9:41:16.504 AM	9:41:16.504 AM	Good
NS2 String myAtca01.IPMC92.Sensor8.idString	idString	Temp Out Right	String	9:38:36.907 AM	9:40:18.490 AM	Good
NS2 String myAtca01.IPMC92.Sensor8.reading	reading	19	Float	9:40:17.303 AM	9:40:22.683 AM	Good
NS2 String myAtca01.IPMC92.Sensor7.idString	idString	Temp Out Center	String	9:38:35.835 AM	9:40:26.703 AM	Good
NS2 String myAtca01.IPMC92.Sensor7.reading	reading	22	Float	9:41:16.301 AM	9:41:16.301 AM	Good

- 💑 Server	
- 옳 StandardMetaData	
−읋 myAtca01	
>- 👶 Board1	
>-🚓 Board10	
>-🛼 Board11	
>- 🛼 Board12	
>- 🚕 Board13	
>-💫 Board14	
>- 옳 Board2	
>- 🚜 Board3	
>-💫 Board4	
>-💫 Board5	
>-🛼 Board6	
>-💫 Board7	
>- 옳 Board8	
>-💑 Board9	
>- 옳 Chassis	
>-💑 FanTray1	
>-옳 FanTray2	
y- 🚜 IPMC130	
Ÿ− 🚜 Sensor0	
>- ■ idString	
>- lowerCriticalThreshold	
>- lowerNonCriticalThreshold	
>- lowerNonRecoverableThresh	old
>- a number	
>- reading	
>− type	
>- upperCriticalThreshold	
>- upperNonCriticalThreshold	
>- upperNonRecoverableThresh	nold
>- Sensor1	4.0
>- 💑 Sensor10	13

Integration with WinCC OA

WinCC OA and Integration Objectives WinCC

- Standard at CERN for Detector Control Systems
- Commercial and custom detector hardware is monitored and controlled through it
- It is the **interface** to the **shifter** in the control room
- Provides interface to OPC UA servers and integrates well with it

Objectives:

- ATCA shelves that use AtcaOpcUa should be integrated into the DCS
- Provide monitoring via WinCC OA UI
- Include archiving of historical data and alarm handling

Further ATLAS objectives:

Integrate in ATLAS FSM tree structure

WinCC OA data availability fwAtca

- WinCC OA integration is done by the fwAtca tool (uses fwQuasar)
- It creates datapoints for the discovered hardware based on the automatically created xml of the AtcaOpcUa server
- By default and optionally creates additional configuration for the datapoints including
 - Archiving
 - Alarms
 - Descriptions

WinCC OA data availability

- fwAtca provides a library with helper functionality intended **for** use in sub-detector DCS experts custom scripts
- Functionality to set **alarm** limits on sensors based on hardware defined thresholds (non-critical, critical, non recoverable)
 - Communication to the hardware is required

mvAtca01/IPMC16

mvAtca01/IPMC3 myAtca01/IPMC90

Create datamoint

Delete Datapoint

fwAtca Select configuration xml Information as exposed by >- Board3 >- Board4 the AtcaOpcUa server - 🚜 Board5 ▼

ATLTSTATCA ♦ ecc fwAtcaRoard ▶ - fwAtcaChassis A Roards ▶ -c⊈ fwAtcaEvent Board9 ▶ -cd fwAtcaFanTray ▼ -cs fwAtcalpmc Chassis mvAtca01/IPMC130 - 🚜 FanTray1 SanTray2 A IPMC130 mvAtca01/IPMC92 - Sensor0 •c≤ fwAtcaManager → ■ idString ← fwAtcaPowerSupply > @ lowerCriticalThreshold ▼ -cs fwAtcaSensor >- I lowerNonCriticalThreshold ► □ myAtca01/IPMC130/Sensort lowerNonRecoverableThreshold ► □ myAtca01/IPMC130/Sensor1 ▶ ☐ myAtca01/IPMC130/Sensor10 - number myAtca01/IPMC130/Sensor11 - reading myAtca01/IPMC130/Sensor12 >- @ type myAtca01/IPMC130/Sensor13 >- @ upperCriticalThreshold > @ upperNonCriticalThreshold Create Datapoint Types >- @ upperNonRecoverableThreshold Sensor1 Delete Datapoint Types [INFO] Chosen path: /home/pmoschov/myGitRepos/fwAtca/scripts/libs/fwAtca/fwAtcaConfigParser.ctl [INFO] Datapoints created succesfully! [INFO] Initialized descriptions succesfully!

fwAtca tool UI

v8.4.0 (11-FEB-2020)

ATCA® (6

When creating datapoints ✓ Activate addresses

✓ Create default descriptions

Create default alarms

Activate alarms Create default archives

Activate archiving

Integration with ATLAS FSM

ATLAS FSM integration fwAtcaFsm

- Many sub-detectors with suchlike (CERN-standard) ATCA setups that need to integrate with ATLAS FSM
- A common centralized way of generating the ATLAS FSM tree for all ATCA was chosen, allowing for custom user extensions
- The motivation is to provide easy uniform monitoring (bottom to top state/status propagation)
- To allow shifters have an overview with a **nicely informative visual interface**
- The fwAtcaFsm tool automates the tedious development procedure by additionally
 - Identifying the sub-detector it is deployed into
 - Handling the FSM tree states during creation
 - Creating the sub-detector specific ATCA FSM tree based on its discovered hardware
 - Generate, Start, examine the FSM tree etc.

ATLAS FSM integration fwAtcaFsm Usage

- Pleasant one-click operation
 - Literally <1 minute task

ATLAS FSM integration

fwAtcaFsm

- Pleasant one-click operation
 - Literally <1 minute task
 - Results to a fully functional ATLAS
 FSM ATCA project (tree+Uls)

ATLAS FSM integration

ATCA FSM API & accompanying functionality

- The fwAtcaFsm framework package exposes additionally an ATCA FSM API (WinCC OA library) with functionality to handle the flow of the procedure to create the tree
 - Sub-detectors developers can use this method to create custom scripts in order to **integrate and extend** with more complex solutions (integrate with information from other ATCA-related OPC UA servers)
- Comprises functionality for custom board information
 - Functionality that binds external-source information to board node status. The ATCA FSM API user provides relevant to blade datapoints in a sensitivity list which is taken into account for the calculation of the status of the node

LAR ATCA integrated in ATLAS FSM

STF L1Calo ATCA integrated in ATLAS FSM

Use cases and applications

Current AtcaOpcUa Use Cases in ATLAS

	ATCA Shelves	OPC UA ATCA Servers	fwAtca	fwAtcaFsm	Status	
LAr	3	2			In P1 and in EMF test setup	
TDAQ	6	1	/	/	In STF development machine	
csc	1	1			In development machine	
NSW	4	3	1	1	In integration sites and in development setup	

Big effort with sub-detectors to facilitate deployment in their test setups. Thanks to P. Thompson and TDAQ team for providing their hardware

Picture from Surface Test Facility pre-Covid

Final Points

- The ATCA software ecosystem has made progress and fulfilled the required functionality
- An automatic discovery mechanism was introduced, covering standard and custom variables and sensors
- The performance has been improved taking into account users DCS-needs
- A set of tools for easy integration in WinCC OA complementing the controls ecosystem
 - Including archiving and alarm handling
- An extra set of tools for easy integration in ATLAS FSM has been introduced
 - One-click from datapoints to tree
- The software gained mileage in various sub-detectors ATCA setups including 2 LAr ATCA in P1

AtcaOpcUa server and WinCC OA integration references

- General interest group for OPC UA (releases, news, feedback etc)
 - o opc-ua-atca
- Main project page
 - https://gitlab.cern.ch/atlas-dcs-opcua-servers/AtcaOpcUa/-/releases
 - Suggested v. 0.9.1
- fwAtca WinCC OA integration for AtcaOpcUa
 - https://gitlab.cern.ch/atlas-dcs-fwcomponents/fwAtca
 - Suggested v. 8.4.2
- fwAtcaFsm ATLAS FSM integration
 - https://gitlab.cern.ch/atlas-dcs-fwcomponents/fwAtcaFsm
 - Suggested v. 8.4.2

Backup