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Overview

Outline of Lecture
Introduction to the ATLAS and CMS detectors
Review of relevant definitions and conventions
Low p1 processes
Hadronic jets
Vector boson W and Z physics

Top quark physics
The context of the lectures will focus on the ATLAS and CMS experiments,
though LHCb and ALICE can and do study many of the processes discussed!

Where differences between ATLAS/CMS measurements are irrelevant or minor, |
will typically show ATLAS results as examples since I'm more familiar with this
experiment!

Credit to M. Watson (Birmingham) for material on top quarks!



General Purpose Detector Overview

Most general purpose hadron collider detectors (GPDs) (e.g. ATLAS, CMS, CDF,
D@, UA1) share the same common components

m Tracking Detector + Solenoid Magnet: Measure trajectory of charged particles
to infer momentum and charge, used to reconstruct primary interaction point

m Electromagnetic Calorimeter: Measure the energy of high energy' electrons,
positrons and photons

m Hadronic Calorimeter: Measure the energy of high energy’ hadrons
(v%, K*, p/p), used (with EM calo.) to build “jets”

® Muon Detector: Detect muons with momentum sufficient to traverse
calorimeters, sometimes a dedicated magnet system is present to measure
momentum and charge

m Trigger: System to perform first coarse selection of “interesting” events to reduce
raw collision data rate (O(10MHz) at LHC) to a manageable rate (O(100Hz) at
LHC) for permanent storage and offline analysis

T Typically Ex > 100 MeV



ATLAS Detector Overview
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CMS Detector Overview
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Definition of Kinematic Quantities

LHC proton beam design energy is 7 TeV, pp collisions with up to /s = 14 TeV
occur at the interaction points (IP) (i.e. ATLAS/CMS detectors)
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m Given the composite nature of the proton (i.e. quarks and gluons), longitudinal
momentum p, and total energy E are typically not very useful

m Transvere momentum pr = \/p? + pj is more helpful, initial pp system has
pt = 0 so one can assume ). p7 = 0 for the system of particles produced

m Polar angle 0 is not Lorentz invariant, so rapidity y and pseudo-rapidity 7 are

typically used (differences in y and 7 are Lorentz invariant)
n =y for

}’=1In(E+pz) 71=1In (LH—pZ):—In [tan (9)} massless
2 E—p, 2 lp| — p: 2 particles




Event rates in pp collisions

proton - (anti)proton cross sections
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Inelastic pp collisions
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Left: Phys. Rev. D 92, (2015) 012003 (arXiv:1503.08689) Right: Phys. Rev. Lett. 117 (2016) 182002 (arXiv:1606.02625)

particles in y

(a) Non-diffractive (pp — X) - Around 55% of total pp cross-section

Non-diffractive events involve colour exchange, more uniform production of

(b) Single-diffractive (pp — Xp/pY) - Around 12% of total pp cross-section
(c) Double-diffractive (pp — XY) - Around 8% of total pp cross-section

m Diffractive events involve excitation of one or both protons into a high mass color
singlet state which decays to system X/Y, no colour is exchanged, localised (in y)

production of new particles



Soft pp interactions

35

The majority of pp events at LHC energies involve soft non-diffractive processes,
characterised by a low particle multiplicity with low pr hadronic activity
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Figures: Phys. Lett. B 758 (2016) 67 (arXiv:1602.01633)
m Generally referred to as “minimum bias” events (i.e. trigger requires minimal
activity in the detector, such as a single low pr track / calo. deposit)
m Modelled semi-empirically with MC generators which are “tuned” to data,
predictions can vary quite a bit among generators / data used for tunes

But why should you care, even if you're only interested in “high pr” physics?



Events with multiple pp collisions

Given the high density of nominal LHC bunches (10'! protons/bunch), multiple
independent pp interactions in a single bunch crossing (“pileup”) are common

m Most of these interactions are soft non-diffractive collision events, critical to
understand their behaviour!

m This phenomenon presents a wide variety of challenges for triggering, event
reconstruction and physics analysis...

ATLAS Online, 13 TeV ILdt=148.5 fot
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(2 x 10**cm?s™"), mean number of 4 Candidate Z — .t~ event reconstructed
pp interactions was as high as 60! among 25 “pileup” pp interaction vertices



The “Underlying Event”

In hard pp scattering events, the underlying event (UE) consists of the
and particles produced in multiple parton interactions (MPI) and
inital/final state radiation

Figure: arXiv:hep-ph/0311270

m Not simply a “minimum bias” event overlaid on the hard scattering, activity is
correlated with hard process due to colour and momentum conservation

m As with soft non-diffractive events, modelled with effective descriptions within MC
generators tuned to data




How to measure the “Underlying Event”?

1
35

Since it accompanies every “interesting” pp event, we need to understand the UE,
but how can one disentagle the “hard process” from the underlying event in order

to measure it?
m Divide azimuthal plane w.r.t. direction of leading pr
track into four regions
m Towards and away regions sensitive to hard process

m Transverse region is more sensitive to the UE
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Use observables such as mean charged-particle pr and multiplicity in Transvere
region to “tune” predictions of UE models in MC generators



Hard parton — parton scattering in QCD
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35

The “QCD Collinear Factorisation” method is the basis of all pp scattering
calculations and MC simulations, cross-section calculation separated into two parts:

P iz, pu?)

fj(l’2>ll2)

The “hard scattering” partonic
cross-section & for two partons (i.e.
quarks and gluons) jj — X

Calculable with perturbative QCD, often
systematically improvable with higher
order corrections to perturbative series

Description of the probability (density) f
to find a parton with (longitudinal)
momentum fraction x within a proton,
known as a parton density function

Non-perturbative quantity, obtained by
fitting to data (typically ep DIS
measurements)

o(P1, P2) = Z/dxldX2f}(X1Hu/2) (e, 1) - Gii(pr, p2, as (i), Q% /1)
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Jets B

The fragmentation of a high energy quark/gluons into a collimated hadronic final
state is known as a “jet”
m Hard pp interactions are dominated by jet production initiated hard qq, gg, qg
scattering, jets are ubiquitous at the LHC!
m The hard scattering processes (e.g. gg — q§) are calculable in perturbative QCD

m The soft fragmentation/hadronisation process (i.e. q/g — hadrons) is a
non-perturbative, rely on physically motivated MC models (e.g. Lund string)




Jet Definitions |

Jets are defined with an algorithm which clusters constituants within an event
(usually calorimeter energy deposits, occasionally tracks) into a single entity

The Rules

m For jets to make sense in the context pf perturbative QCD to make sense, the
(hard) jets should not change when:

m IR Safety: There is soft emission (i.e. add a very soft gluon)
m Collinear Safety: There is a collinear splitting (i.e. one parton is replaced by two

such as g — qq)

Why should you care about the rules?

“Infrared unsafety is a serious issue, not just because it makes impossible to
carry out meaningful (finite) perturbative calcuations, but also because it
breaks the whole relation between the (Born or low-order) partonic structure of
the event and the jets that one observes, and it is precisly this relation that a
jet algorithm is supposed to codify: it makes no sense for the structure of
multi-hundred GeV jets to change radically just because hadronisation, the
underlying event or pileup threw a 1 GeV particle in between them.”
(arXiv:0704.0292)




Jet Definitions Il

Cone Algorithms:

m Cluster all constituants within a given geometric cone,
defined by AR = \/An? + A¢?

m X Features: behaviour very susceptible to additional
soft gluon radiation (e.g. number of jets in event)

m Generally considered obsolete (exception of SISCone)

Sequential Recombination Algorithms:

m Successively combine the “closest” pair of

p, [GeV]
particles according to distance measure dj;

m Stop at a cut-off scale R, final clustering of
particles defines the jet

m v Features: IR + Collinear safe

m Version with p = —1 known as “anti-kt",
widely used at ATLAS/CMS

JHEP 0804:063,2008 (arXiv:0802.1189)

2 2
dj = min (k??f» k'l2'F,,j) (A%;—zAnU)



Inclusive Jet Cross-sections L

35

Jets are everywhere at the LHC, note y-axis units, =~ 10* pb / GeV at pr = 100
GeV, very high rate! (c.f. total Higgs cross-section =~ 20pb at /s = 7 TeV)
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jet Cross-sections
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m Di-jet production is another critical test of perturbative QCD

m Good agreement with NLO perturbative QCD predictions within experimental and
theoretical uncertainties

m Also important as a search channel for new resonances (e.g. Z' — qq)
m Di-jet events with mj; up to 9 TeV measured at the LHC (/s = 13 TeV)




Multi-jet Cross-section
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m Multi-TeV pp collisions provide a huge phase space for multi-jet production

m Another important test for QCD and MC generator predictions, critical
background for general searches for new physics



W and Z bosons L

35

W and Z boson production in pp collisions proceeds primarily through qq
annihilation (Drell-Yan), inclusive production often involves additional high pr jets

m Leptonic W and Z boson decays are
the primary source of isolated high pr (jet)
leptons at the LHC

m B(Z—=U)~=3%BW —=v)=11% q I

m Useful as probes of parton densities
and for precise tests of the SM
. Z(Ww™)
m Present in decays of H, top quark and
particles beyond the SM

m Very useful as a calibration source for
lepton efficiency, energy scale /
resolution measurements g" (D)

m Important background for many
search channels (e.g. SUSY)

Experimental Signature:

Z — £7£7: Pair of isolated high pr oppositely charged leptons

wE = gt Single isolated high pr lepton and large missing transverse energy
-



W and Z boson mass dist

_ . - N —
Z — €74~ candidates 8 ATLAS e
PR 5=7Tev, 451" §§ji:)
m Di-lepton invariant mass distribution is the & gt M B - s o
. . . w ibosons
primary means by which Z boson candidates o — v
can be identified
10°
m Mass resolution (at ATLAS/CMS) is typically ]
10
smaller than [z =~ 2.5 GeV
10
Figures: Eur. Phys. J. C 77 (2017) 367 ( arXiv:1612.03016) P O |
60 80 100 120 140
Reminder: mz = 91.2 GeV and myy = 80.4 GeV m,, [GeV]
m
3
5 BO0F v e 4 4 .
8 450l ATLAS ~+ D W= — £~ v candidates
~ E{s=7Tev, 46" § ol (o)
@ 400Ew | v — v . .
% 350 " — ot m Neutrino not detected, only its transverse
i B momentum can be inferred from E

N W
a o
o o

m Can only reconstruct “transverse mass" mr

n
o
o

[
15
o

m Peaking structure observed, though peak below
mw and much broader than 'y ~ 2.1 GeV

[N
o
o

40 50 60 70 80 90 100 110 120 i

mr = \/2pLER (1 Do)
m; [GeV]

S —



W and Z inclusive cross-sections
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W+ and W~ cross-sections
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In pp collisions, o+ > o, —, why?

m Primarily due to larger valance u
quark proton parton density

m The cross-section ratio is thus a
useful input to PDF fits



boson production in association with jet(s)
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Figures: JHEP 05 (2018) 077 (arXiv:1711.03296)
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m Important test of perturbative QCD and common background for many searches

m MC generators tend to struggle to describe multiplicity beyond 3 additional jets

m Relative jet multiplicity very similar for W' and W™ until around 4 additional jets
where PDF affects become more important




Z boson production in association with jet(s)

Figures: Eur. Phys.

J. C77 (2017) 361 (arXiv:1702.05725)
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Important test of perturbative QCD and common background for many searches

MC generators tend to struggle to describe multiplicity beyond 3 additional jets




Introduction to Top Quark Physics

+ Discovered by CDF and D@
collaborations at the Tevatron in 1995
* Aunique quark: . ° é
— lifetime ~5x10-25 s o os Vo
— decays before it hadronises Q
— no bound states (mesons) Q -
+ We want to know more about its o e d
properties: .
— Mass (why so large?) iy e ey
— Spin
— Charge
— Lifetime

Decay properties (rare decays)
— Gauge couplings
— Yukawa coupling to Higgs (why ~17?)




Top Quark Production

top pairs

Pair production: qq and gg-fusion (QCD)
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What would we like to learn about the top quark?

|\V helicity
Wb coupling, | V|

Top mass, width, spin, charge

e*/q

PSR ——. ¢

Volkawa coupling?]

Spin € /q
polanization

Rare/non-SM decays ?
et




Overview of tt decays
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Example of top quark event selection

electron+jets
muon+jets
tautjets

ad

tautjets
muon+jets

[

electron+jets

®

et ud c§

Electron

» Good isolated calo object
* Matched to track

* E;>20 GeV

* |n|€[0;1.37][1.52;2.47]

Jet V4
» Topological clusters

* Anti-k; (R=0.4)

» MC-based calibration
* pr> 25 (20) GeV
*In<25

w !

Muon

» Segments in tracker
and muon detector

* Isolated track

* pr>20 GeV

*Inl<2.5

Markus Cristinziani (Bonn)

b-Jet \

« Displaced tracks or
secondary lepton

« SVO0: reconstruct sec.vertex

« JetProb: track/jet compati-
bility with primary vertex

March 26t , 2011

E Miss

* Vector sum of calo
energy deposits

+ Corrected for
identified objects

Event cleanin

« Good run conditions
« PV at least 5 tracks
« Bad jet veto

+ Cosmic veto (up)

Top physics at ATLAS



Measurement of tt cross-sections
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Cross-section Summary

Inclusive tt cross section [pb]
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Single Top Quark Production

« Motivation: single-top
— Single top is a direct probe of CKM element V,,
— 3 modes with distinct signatures §
— Sensitive to many models of new physics ]

Single top will
improve with
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[ ATLAS Preliminary May 2017
+ Single top-quark production
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Top Quark Mass

» Top mass is an important
parameter of the SM

* Provides constraints on the

CMS 2011,5.0 fb”' at Vs = 7 TeV.

properties of new particles, 3 16000 oy
including the Higgs boson S 1a00r £
% 1200F ol
& 1000/~ o
* General method: a0l T o o
— set of templates constructed from eook- + Gogra
simulated samples with various m, 400; L Sekgound
— likelihood fit is performed to derive .= . Db
the mass G

=y

0 150 200 250 300 350 400
Reconstructed mass [GeV]



Top Quark Mass
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Summary

The physics open to study at the LHC is very rich, spanning orders of magnitude
in terms of energy and coupling strength!
m Soft interactions can never be ignored, essential that they are well understood

m Jets are everywhere at the LHC, important background to any measurement or
search

m W and Z bosons are the primary source of isolated leptons

m The LHC produces a huge number of top quarks, now a major background to
many Higgs / BSM searches



