

High p_T Physics at the LHC Lecture 4: Higgs Physics and Advanced Topics

Warwick Week 2020

23rd July 2020

Andy Chisholm (University of Birmingham)

I will take a slightly different approach in this lecture...

- Our understanding of the (125 GeV) Higgs boson is still developing rapidly
- This lecture will review the current state of the art and will be more "technical" (don't worry, I will explain!)
- Along the way, I will make several interludes to discuss more advanced experimental techniques

Outline of Lecture

- Introduction to the Higgs boson
- Review of main production and decays modes for $m_H = 125 \text{ GeV}$
- Summary of selected recent experimental results
- Several interludes on event reconstruction techniques

The Brout-Englert-Higgs Mechanism

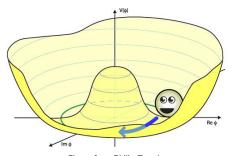
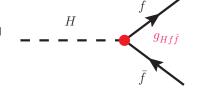


Figure from Philip Tanedo

- Introduce a complex scalar SU(2) doublet ϕ to the SM (4 d.o.f.)
- \blacksquare If potential $V(\phi)$ has a non-zero VEV, the EW symmetry is spontaneously broken
- $lue{}$ Leads to Goldstone bosons (3 d.o.f.) which mix with W^\pm and Z fields
- lacksquare Provides gauge invariant mass terms (and long. pol.) to the W^\pm and Z \checkmark
- Predicts the fourth d.o.f. should manifest as a scalar "Higgs" boson!

In 2012 a particle with a mass of 125 GeV, consistent with the SM Higgs boson, was discovered by ATLAS and CMS \checkmark

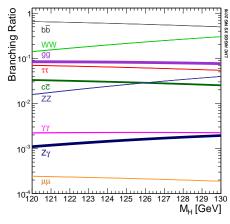
"Yukawa" couplings between the Higgs (ϕ) and fermion (ψ) fields are possible:


$$\mathcal{L}_{\text{fermion}} = -y_f \cdot \left[\bar{\psi}_L \phi \psi_R + \bar{\psi}_R \bar{\phi} \psi_L \right]$$

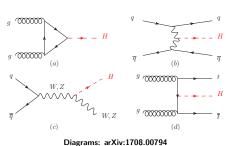
If $V(\phi)$ has a non-zero VEV, expansion leads to (h is the physical Higgs field):

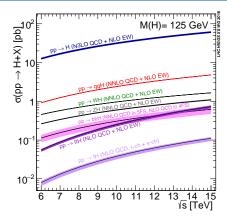
$$\mathcal{L}_{ ext{ fermion}} = -\underbrace{\frac{y_f v}{\sqrt{2}} \cdot ar{\psi} \psi}_{ ext{mass term}} - \underbrace{\frac{y_f}{\sqrt{2}} \cdot h ar{\psi} \psi}_{ ext{Yukawa coupling term}}$$

Results in Higgs–fermion coupling proportional to the fermion mass $(g_{Hf\bar{t}} = m_f/v)$


- Gauge invariant fermion mass terms in SM ✓
- y_f "predicted" in SM given knowledge of v and m_f ($v \approx 246$ GeV from EW observables) \checkmark
- Offers no fundamental insight into the observed fermion mass hierarchy X

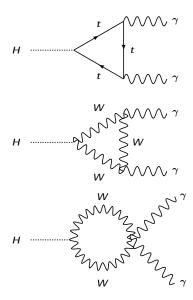
While Yukawa couplings provide concrete predictions for $Hf\bar{f}$ interactions, they fail to describe the origin of the fermion mass hierarchy i.e. why is $m_t/m_e \approx \mathcal{O}(10^5)$!?


Total decay width of SM 125 GeV Higgs boson is around 4 MeV, far below ATLAS/CMS detector resolution!


- $H o b\bar{b}$ is the most common decay, with $\mathcal{B}(H o b\bar{b}) \approx 58\%$
- Decays to fermions (i.e. $H \to q\bar{q}, \ell^+\ell^-$) directly sensitive to Yukawa couplings $(\Gamma \propto y_f^2)$
- Decays $H \to ZZ^*$ and $H \to WW^*$ probe heart of EWSB (coupling determined by shape of $V(\phi)$), for $m_H = 125$ GeV one W/Z is always off-shell
- The decays $H \rightarrow \gamma \gamma$ and $H \rightarrow gg$ are loop induced, no direct $H\gamma \gamma/gg$ coupling

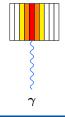
At $m_H=125$ GeV, the channels $H\to ZZ^*\to \ell^+\ell^-\ell^+\ell^-$ and $H\to \gamma\gamma$ exhibit the most favourable signal to background at the LHC

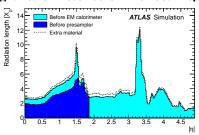
Total cross-section at $\sqrt{s}=13$ TeV is around 55 pb, this is actually not such a small cross-section (given LHC lumi.), over 7M Higgs produced in LHC Run 2!



- a) Gluon fusion process $gg \rightarrow H$ is dominant ($\approx 88\%$)
- **b**) Vector boson fusion (VBF) $q\bar{q} \to q\bar{q}H$ is the sub-leading process ($\approx 7\%$)
- lacktriangledown c) Associated production with a W or Z boson "Higgsstrahlung" (pprox 4%)
- lacksquare d) Associated production with $tar{t}~(pprox1\%)$

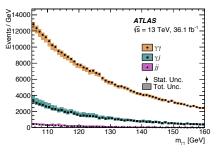
Modes sensitive to different couplings, important to study them all. Some channels facilitate the study of experimentally challenging decays e.g. $Z(\ell^+\ell^-)H(b\bar{b})$


- Decay induced through fermion (mostly top quark) or W boson loop diagrams (with interfering amplitudes)
- Rather low branching fraction $\mathcal{B}(H \to \gamma \gamma) \approx 2 \times 10^{-3}$
- Characterised by two high $p_T \approx m_H/2$ photons, isolated from hadronic activity


ECal. designed to initiate EM shower of incident photon, energy can be measured and direction inffered based on location of signal calorimeter cells w.r.t. beam spot

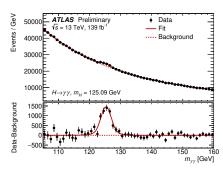
Challenge 1: Neutral Hadrons

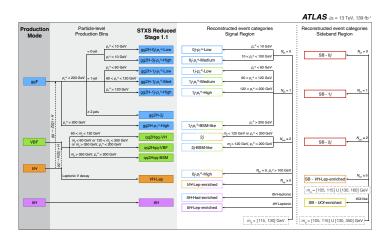
- Jets containing a high fraction of neutral hadrons are the main background to photon reconstruction
- Primarily caused by $\pi^0 \to \gamma \gamma$ decays (i.e. two photons with a small angular separation)
- Mitigated by considering the "shape" of the calorimeter signal (single or overlapping photons?)



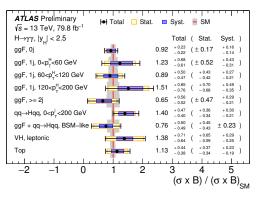
Challenge 2: Material Interactions

- Much material (tracking detectors) in front of the EM calorimeter
- High probability (\approx 30%) that a photon with convert to $\gamma \rightarrow e^+e^-$ before reaching the calorimeter
- Attempt to reconstruct the final state electrons to recover this "inefficiency"


$extbf{\textit{H}} ightarrow \gamma \gamma$ Analysis Strategy

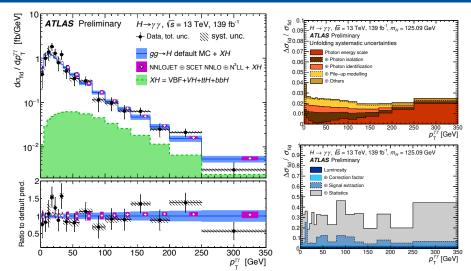

Strategy: Look for events containing two isolated high p_T photon candidates

- Dominant "irreducible" background from non-resonant QCD production of two isolated photons
- Residual background due to one or both photons being "fake" from multi-jet production
- Judicious "shower shape" based photon ID selection reduces this to $\approx 20\%$ of total backgound


- Fully reconstructed final state with excellent resolution in $m_{\gamma\gamma}$
- Search for "bump" consistent with $m_{\gamma\gamma}$ resolution ($\approx 1.5\%$) on top of smoothly falling backgound

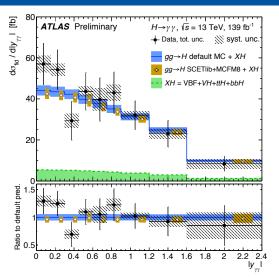
- Measurement strategy detailed in LHC-HXSWG YR4 (arXiv:1610.07922)
- Cross-section for Higgs production in for various sub-processes for a simplified fiducial volume defined as $|y_H|$ < 2.5
- Theoretical uncertainties on overall signal cross sections are removed but kept if they cause migration between categories

$H \rightarrow \gamma \gamma$ production measurements with 80 fb⁻¹ 13 TeV dataset


Summary of the measured simplified template cross sections (STXS)

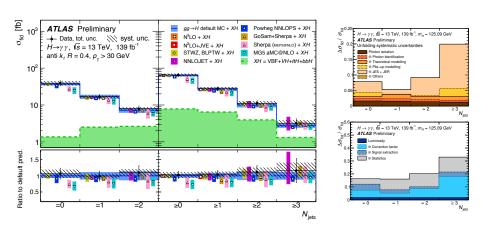
- Wide range of inclusive and differential fiducial (phase space →) cross section measurements
- Global signal strength consistent with SM $\mu = 1.06 \pm 0.08$ (stat.) $^{+0.08}_{-0.07}$ (exp.) $^{+0.07}_{-0.06}$ (theo.)

Objects	Definition
Photons	$ \eta < 1.37 \text{ or } 1.52 < \eta < 2.37, p_T^{\text{iso},0.2}/p_T^{\gamma} < 0.05$
Jets	anti- k_t , $R = 0.4$, $p_T > 30 \text{ GeV}$, $ y < 4.4$
- Central jets	y < 2.5
- b-jets	$ y < 2.5$, $\Delta R(\text{jet}, b\text{-hadron}) < 0.4$ for $b\text{-hadrons}$ with $p_T > 5$ GeV
Leptons, $\ell=e$ or μ	electrons: $p_{\rm T}>10$ GeV, $~ \eta <2.47$ (excluding $1.37< \eta <1.52)$ muons: $p_{\rm T}>10$ GeV, $ \eta <2.7$
Fiducial region	Definition

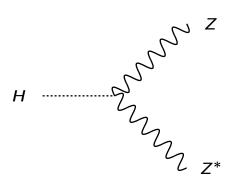

Diphoton fiducial $N_{\gamma} \ge 2$, $p_T^{\gamma_1} > 0.35 \cdot m_{\gamma\gamma}$, $p_T^{\gamma_2} > 0.25 \cdot m_{\gamma\gamma}$ N_{blotz} measurement Diphoton fiducial, $N_{con}^{con} > 1$, $N_{brotons} = 0$

$H o \gamma \gamma$ Differential Cross Sections: $p_{ extsf{T}}^H$ (ATLAS-CONF-2019-029)

- χ^2 probability for compatiblity of data with default SM distribution is 44%
- p_T^H exhibits lowest compatibility with SM of distributions measured (still very high!)


[†] POWHEG NNLOPS normalised to YR4 N3LO (QCD) and NLO(EW) cross section

 \mathbf{z} probability for compatiblity of data with default SM distribution is 68%


† POWHEG NNLOPS normalised to YR4 N³LO (QCD) and NLO(EW) cross section

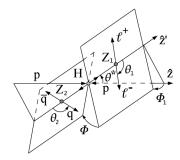
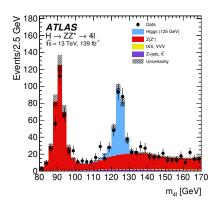
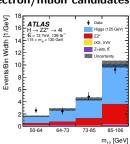
$H o \gamma \gamma$ Differential Cross Sections: $N_{ m jets}$ (ATLAS-CONF-2019-029)

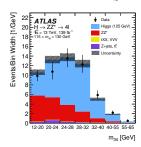
- Multiplicity of associated jets, both inclusive and exclusive bins
- lacksquare Sensitive to contributions from VH and $t\bar{t}H$ production at high $N_{
 m jets}$
- \mathbf{z}^2 probability for compatiblity of data with default SM distribution \mathbf{z}^\dagger is 96%

† POWHEG NNLOPS normalised to YR4 N³LO (QCD) and NLO(EW) cross section

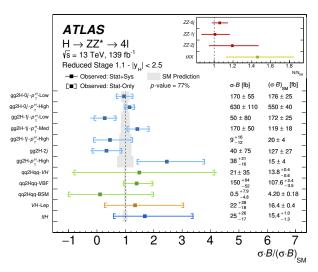
- Tree level decay, directly sensitive to HZZ coupling
- Reasonably high branching fraction, $\mathcal{B}(H \to ZZ^*) \approx 3\%$
- Feasibilty of experimental study driven by characteristics of Z boson decays

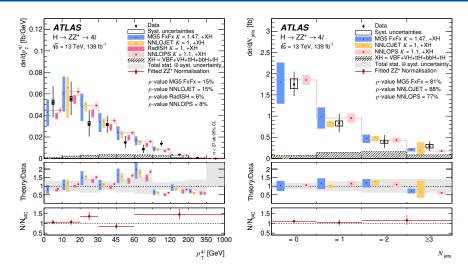
- Most effective channel considers only $Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$ decays
- Reduces branching fraction to $\mathcal{B}(H \to ZZ^* \to 4\ell) \approx 10^{-4}$
- Very sensitive to spin / parity properties of Higgs boson given multiple measurable angular distributions


Figure: CMS-HIG-12-024

Study events containing four isolated high p_T electron/muon candidates


- Very good resolution in $m_{4\ell}$ and $S/B \approx 1$, described as "golden channel"
- Background dominated by "irreducible" nonresonant $Z(Z/\gamma^*)$ production, with much smaller contributions from Z + jets and $t\bar{t}$

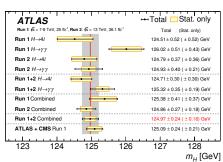

Figures: arXiv:2004.03969

 $H \to ZZ^* \to 4\ell$ production measurements updated with 139 fb $^{-1}$ 13 TeV dataset, global signal strength $\mu = 1.01 \pm 0.08$ (stat.) ± 0.04 (exp.) ± 0.05 (theo.)

"Reduced Stage 1.1" STXS (cross-sections)

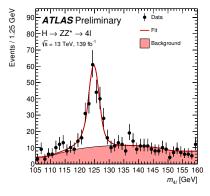
$H o ZZ^* o 4\ell$ Differential Cross Sections (ATLAS-HIGG-2018-29)

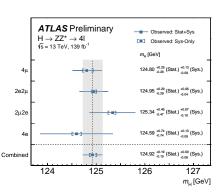
- Differential measurements of p_T^H and associated jet multiplicity
- p-values for compatiblity of p_T^H data with predictions reasonably low...


Latest combined measurement in $H\to 4\ell$ and $H\to \gamma\gamma$ channels, based on 36 fb⁻¹ of 13 TeV data and updated energy/momentum scale calibrations

- Per-event method used in H $ightarrow 4\ell$ case, cross-checked with template method
- Likelihood fit with analytical PDF used for $H \to \gamma \gamma$ channel
- Uncertainty on combined m_H value dominated by systematics
- Precision on a par with Run 1
 ATLAS + CMS combination

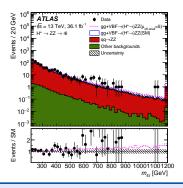
Run 2 $H o \gamma \gamma$ systematics dominated

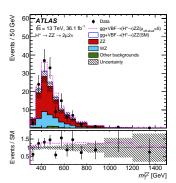

$$\textit{m}_{\textit{H}} = 124.97 \pm 0.24 \,\, \text{GeV}$$


 $H
ightarrow 4\ell$ still very statistically limited (bright prospects for potential Run 2 combination with CMS)

Source	Systematic uncertainty in m_H [MeV]
EM calorimeter response linearity	60
Non-ID material	55
EM calorimeter layer intercalibration	55
$Z \rightarrow ee$ calibration	45
ID material	45
Lateral shower shape	40
Muon momentum scale	20
Conversion reconstruction	20
$H \rightarrow \gamma \gamma$ background modelling	20
$H \rightarrow \gamma \gamma$ vertex reconstruction	15
e/γ energy resolution	15
All other systematic uncertainties	10

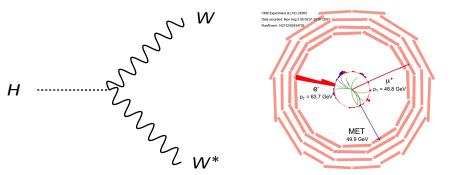
Latest measurement in $H \to 4\ell$ alone, based on 139 fb⁻¹ of 13 TeV data

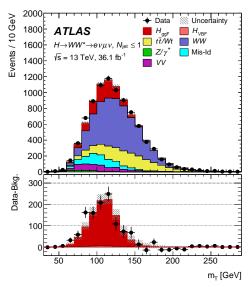



- Methodology as on previous slide, **single measurement more precise than combination with 36 fb**⁻¹, still limited by statistics...
- Systematic uncertainty dominated by muon momentum scale uncertainty

$$m_H = 124.92 \pm 0.19 \, (ext{stat.})^{+0.09}_{-0.06} \, (ext{syst.}) \,\, ext{GeV}$$

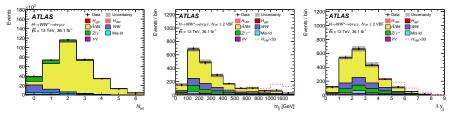
Ratio of on/off-shell signal strengths for $gg \to H \to VV^*$ sensitive to Γ_H

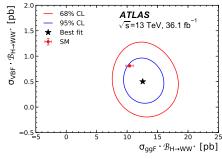

- Best direct limit from CMS $\Gamma_H < 1.10$ GeV at 95% CL with $H \to 4\ell$ (arXiv:1706.09936), very far from SM (\approx 4 MeV)
- Much more sensitive, though assmumes that any BSM physics would affect κ_g and κ_Z identically for on/off-shell production and not modify interference of S and B
- New result with $H \to ZZ^* \to 4\ell(\ell\ell\nu\nu)$ based on 80 fb⁻¹ 13 TeV data

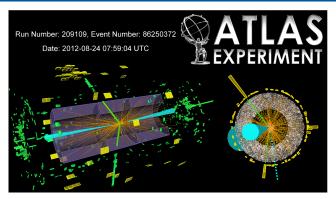

Observed (expected) upper limit of $\Gamma_H < 14.4(15.2)$ MeV at 95% CL

- Tree level decay, directly sensitive to *HWW* coupling
- Second highest branching fraction for $m_H = 125$ GeV at $\mathcal{B}(H \to WW^*) \approx 21\%$
- lacktriangle Feasibilty of experimental study driven by characteristics of W boson decays

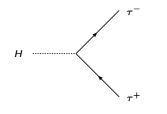
- Most effective channel considers $W \rightarrow e \nu$ and $W \rightarrow \mu \nu$ decays only
- Since only two charged leptons are in the final state, the most effective strategy is to consider $W(e\nu)W(\mu\nu)$ only, to avoid large backgrounds from $Z \to e^+e^-, \mu^+\mu^-$


$H o WW^*$ analysis strategy

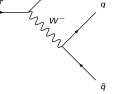

 \uparrow Backgound subtracted transverse $e\mu$ mass, around 10^3 signal events in peak!


- Target opposite sign $e\mu$ final state, dominant backgrounds WW (≤ 1 jet) and $t\bar{t}$ production (≥ 2 jets)
- lacktriangleright Transverse component of di-neutrino system reconstructed as $E_{
 m T}^{
 m miss}$
- $lue{}$ Consider transverse mass of the $e\mu$ system as signal to backgound discriminant

$H \rightarrow WW^*$ with ggH and VBF production (arXiv:1808.09054)



- Categories based on jet multiplicity used to separate ggH and VBF production
- ggH-like categories further purified using leptonic variables
- Central jet veto for ≥ 2 jet (VBF-like) categories
- BDT trained on kinematic variables (m_{ij}, \(\Delta y_{ij}\) etc.) used further purify VBF category
 - **ggH** signal strength: $\mu = 1.21 \pm 0.10 \, (\text{stat.}) \pm 0.15 \, (\text{exp.})^{+0.13}_{-0.12} \, (\text{theo.})$
 - VBF signal strength: $\mu = 0.62^{+0.30}_{-0.28} \, (\text{stat.}) \pm 0.16 \, (\text{exp.}) \pm 0.13 \, (\text{theo.})$



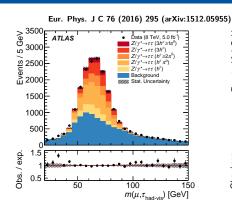
Candidate VBF H
ightarrow au au event in 8 TeV data

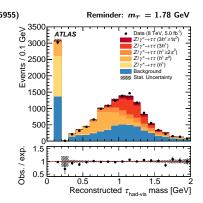
- Tree level decay, directly sensitive to $H\tau\tau$ Yukawa coupling
- Largest leptonic branching fraction for $m_H = 125 \text{ GeV}$ at $\mathcal{B}(H \to \tau \tau) \approx 6\%$
- Most experimentally accesible channel to study Higgs boson coupling to leptons

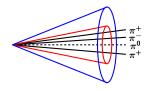
Leptonic: $\tau^- \to \nu_\tau \, \bar{\nu}_\ell \, \ell^-$ with $\ell = e, \mu$

Hadronic: $au^- o
u_ au$ + hadrons

Leptonic Decays:

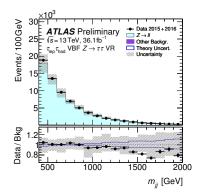

- Always two neutrinos in the final state, charged lepton (e, μ) is the only "visible" particle
- $\mathcal{B}\left(\tau^{-} \to \nu_{\tau} \, \bar{\nu}_{\ell}\right) \approx 17\%$ (for $\ell = e, \mu$ separately, around 35% together)
- Typically experimentally indistinguishable from isolated e, μ , need more information to identify e.g. $Z \rightarrow \tau(\text{lep.})\tau(\text{had.})$

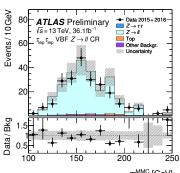

Hadronic Decays:


- Neutrino accompanied a system of charged and neutral hadrons, looks like "narrow" hadronic jet $\mathcal{B}\left(\tau^- \to \nu_{\tau} \text{ hadrons}\right) \approx 65\%$
- e.g. $\tau^- \to \pi^- \pi^0 \nu_\tau$ ($\approx 25\%$), $\tau^- \to \pi^- \nu_\tau$ ($\approx 11\%$), $\tau^- \to \pi^- \pi^+ \pi^- \nu_\tau$ ($\approx 9\%$)

"1-prong": exactly one charged particle (inc. e/μ) and any number of neutrals $\mathcal{B}\approx 85\%$ "3-prong": exactly three charged particles (hadrons) and any number of neutrals $\mathcal{B}\approx 15\%$

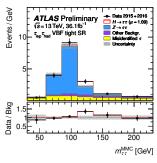
Hadronic au decay reconstruction



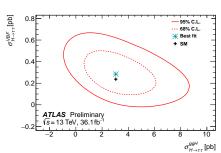


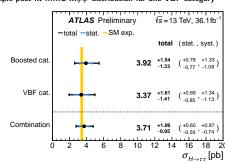
- Identify energy deposit in calorimeter, matched to tracks, which is is concentrated within a narrow cone, with no further hadronic activity in broader cone
- Reconstruct 4-vector from "visible" decay products, though $m_{ au, {
 m vis.}} < m_{ au}$ due to neutrino
- **Z** $\rightarrow \tau(\mu\nu_{\tau})\tau(\nu_{\tau})$ hadrons) often used as control channel to calibration algorithms

Latest result in $H \rightarrow \tau \tau$ channel with 36.1 fb⁻¹ of 13 TeV data

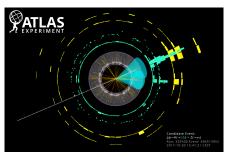

- Target "boosted" production and VBF, always require an additional jet with $p_T > 40 \text{ GeV}$
- Events categorised by di-τ decay topology (three permutations from lep. and had. decays) then split into VBF and "boosted" (ggH + jet)

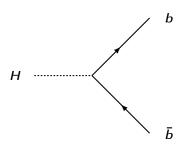
- Missing Mass Calculator (MMC) used to estimate $m_{\tau\tau}$ based on visible decay products and $E_{\mathrm{T}}^{\mathrm{miss}}$, used as primary S/B discriminant
- Main challenge is careful treatment of the dominant irreducible $Z \to \tau \tau$ and $Z \to \ell \ell$ $(\ell = e, \mu)$ backgound
- Modelled with (Sherpa 2.2.1) simulation (as opposed to "embedding" used in Run 1), validated in several control regions


H ightarrow au au (ATLAS-CONF-2018-021)

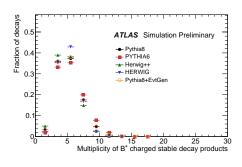


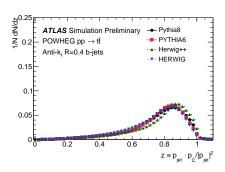
Observation of H ightarrow au au with ATLAS data


- $H \to \tau \tau$ remains the primary probe of couplings to leptons, all measurements in agreement with SM expectation
- Observed (expected) significance 4.4(4.1) σ , when combined with ATLAS Run 1 $H \to \tau \tau$ result leads to 6.4(5.4) σ


 \leftarrow Example post-fit MMC $m_{ au au}$ distribution for one VBF category

- Tree level decay, directly sensitive to $Hb\bar{b}$ Yukawa coupling
- Highest branching fraction for $m_H=125$ GeV at $\mathcal{B}(H o b \bar{b}) \approx 58\%$
- Huge background from multi-jet production at the LHC, impossible to observe with an inclusive di-jet analysis!

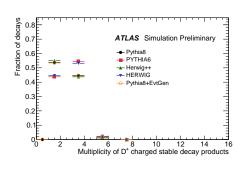


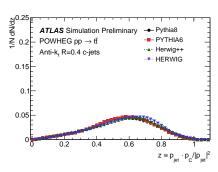


Candidate $pp
ightarrow Z(
u
u)H,\, H
ightarrow bar{b}$ event in 13 TeV data

- **Solution 1:** Consider production channels with additional hard objects, such as (W/Z)H and VBF production, to reduce multi-jet background
- **Solution 2:** Use *b*-tagging techniques to identify products of *b*-quark fragmentation

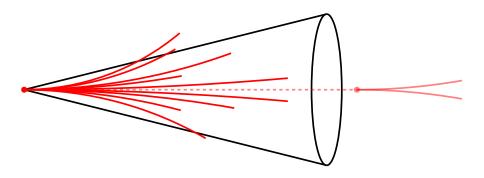
- Lifetime: Long enough to lead to a measureable decay length (around 5mm for a 50 GeV boost)
- Mass: Weakly decaying b-hadrons have masses around 5 GeV, leading to high decay product multiplicities (average of 5 charged particles per decay)
- **Fragmentation:** Much harder than jets initiated by other species (*b*-hadrons carry around 75% of jet energy, on average)

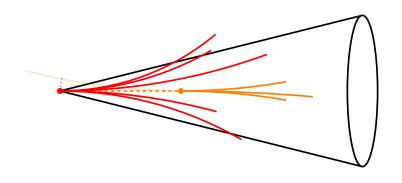




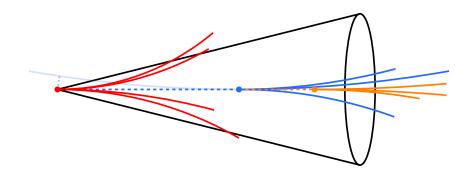
Left: Mean charged multiplicity in B⁺ mesons decays

Right: b-quark fragmentation function


- **Lifetime:** Shorter than the *b*-hadrons by around a factor of 2-3, still enough for measureable decay length (around 1-3mm for a 50 GeV boost)
- Mass: Weakly decaying c-hadrons have masses around 2 GeV, around 2–3× lower than b-hadrons (mean of \approx 2 charged particles per decay)
- Fragmentation: Softer than *b*-jets, but still harder than jets initiated by light species (*c*-hadrons carry around 55% of jet energy, on average)


Left: Mean charged multiplicity in D⁺ mesons decays

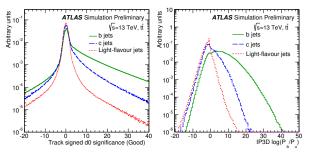
Right: c-quark fragmentation function


Typical Experimental Signature

- Light-quarks hadronise into many light hadrons which share the jet energy
- Tracks from this vertex often have impact parameters consistent with zero
- Long-lived light hadrons (e.g. K_S^0 , Λ^0) can be produced, though they are more likely to decay very far (many cm) from the primary pp vertex

Typical Experimental Signature

- c-quark fragments into a c-hadron which carries around half of the jet energy
- c-hadron decay vertex often displaced from the primary pp vertex by a few mm
- Tracks from this vertex can often have large impact parameters

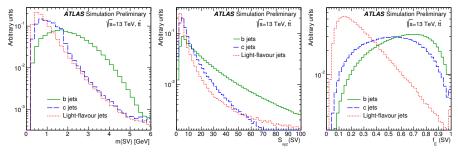


Typical Experimental Signature

- b-quark fragments into a b-hadron which carries most of the jet energy
- Most *b*-hadrons (\approx 90%) decay into *c*-hadrons
- b-hadron decay vertex often displaced from the primary pp vertex by a few mm
- Subsequent *c*-hadron decay vertex often displaced by a further few mm
- Tracks from both of these vertices often have large impact parameters

The signed IPs of tracks associated to jets are powerful jet flavour distriminants:

- Exploit "sign" of impact parameter: positive if track point of closest approach to PV is downstream of plane defined by the PV and jet axis
- Tracks from b-hadrons tend to have highly significant (IP/σ_{IP}) positive IPs, while most tracks from the PV have a narrow, symmetric distribution
- ✓ Very inclusive and highly efficient
- Relies upon accurate measurement of jet axis, sensitive to "mis-tag" high IP tracks from V^0 or material interactions, IP/σ_{IP} difficult to model in detector simulation

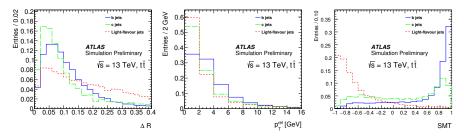


Left: Transverse IP significance distribution

Right: likelihood ratio discriminant based on 3D IPs of tracks

Exploit expectation of a secondary vertex from either b or c-hadron decays:

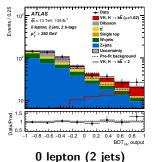
- Attempt to reconstruct a secondary vertex from high IP tracks associated with jet
- Use invariant mass of tracks at SV to discriminate b or c-hadron decay vertices from V^0 decays or material interations
- Further exploit hard *b*-jet fragmentation, SV should carry a large fraction of jet energy
- \checkmark SV found in up to \approx 80% of *b*-jets but only a few % of light flavour jets
- X Degraded light jet rejection as jet p_T increases, careful considerations to mitigate "tagging" of material interactions required

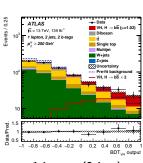

Left: Inv. mass of tracks at SV

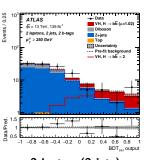
Centre: 3D SV decay length significance

Right: Energy fraction of SV tracks

Exploit the large branching fractions for the semi-leptonic c/b hadron decays and the clean "muon-in-jet" experimental signature:

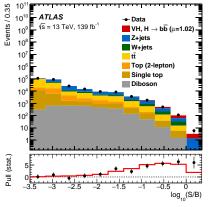

- Expect much higher rate of muons within b/c-jets, relative to light flavour jets, due to the decays $B \to \mu\nu X$ and $B \to DX \to \mu\nu X'$ ($\mathcal B$ of around 10% each)
- $lue{}$ Complementary to SV and IP based taggers, different c/b hadron properties exploited and ATLAS detector components employed
- X Light flavour jet backgrounds from muons produced in π/K decays in flight difficult to model in simulation

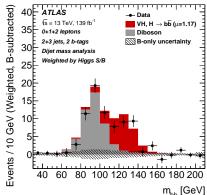



Left: ΔR of muon w.r.t. jet axis Centre: p_T of muon relative to the jet axis Right: BDT built from muon observables

VH channel traditionally expected to be brightest hope of finding H o b ar b at LHC

- Search for events with 0, 1 or 2 leptons $(Z \to \nu \nu, W \to \ell \nu \text{ and } Z \to \ell \ell)$ and ≥ 2 b-tagged jets, focus on high p_T^V events to suppress V + jets and $t\bar{t}$ background
- Recently updated with 139 fb⁻¹ of 13 TeV data from LHC Run 2 (2015 2018)
- BDT used as nominal S/B discriminant: trained with kinematic variables (e.g. $m_{b\bar{b}}$, p_T^V , $E_T^{\rm miss}$, ΔR_{bb} , p_T^b etc.) in each channel
- Eight signal regions used: (3 lepton multiplicity) \times (2 jet multiplicity) + 1 additional jet multiplicity and 1 additional p_T^V region for 2 lepton channel

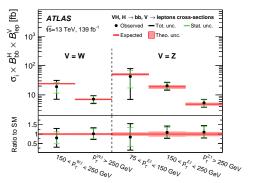



1 lepton (2 jets)

2 lepton (2 jets)

 $VH, H \to b\bar{b}$ signal now very clearly visible by eye! For 13 TeV (Run 2) alone, observed (expected) significance is $6.7(6.7)\sigma$, signal strength $\mu_{VH(b\bar{b})}=1.02^{+0.18}_{-0.17}$

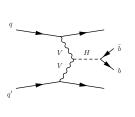
- Cut-based analysis (CBA) also performed as a cross-check, selection performed using many of the same variables used in BDT
- Parallel "validation" analysis of $VZ(b\bar{b})$: $\mu=0.93^{+0.15}_{-0.14}$



Combined log(S/B) distribution for multivariate analysis

Bkgd. subtracted $m_{b\bar{b}}$ distribution for CBA, weighted by per-event S/B

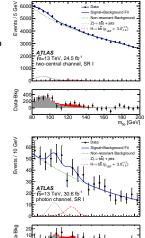
$H o bar{b}$ with VH associated production III (arXiv:2007.02873)


- "Theory" systematics largest for signal strength measurement, particularly signal and V + jets background modelling
- Experimental systematics dominated by b-tagging uncertainties
- STXS measurements still limited by statistics

STYS	measurements	for	VН	production
2172	measurements	ior	VП	production

Source of un	portainty		σ_{μ}	
Source or un	certainty	VH	WH	ZH
Total		0.177	0.260	0.240
Statistical		0.115	0.182	0.171
Systematic		0.134	0.186	0.168
Statistical ur	certainties			
Data statistic	cal	0.108	0.171	0.157
$t\bar{t} e\mu$ control	region	0.014	0.003	0.026
Floating nor	malisations	0.034	0.061	0.045
Experimenta	l uncertainties			
Jets		0.043	0.050	0.057
E_{T}^{miss}		0.015	0.045	0.013
Leptons		0.004	0.015	0.005
	b-jets	0.045	0.025	0.064
b-tagging	c-jets	0.035	0.068	0.010
	light-flavour jets	0.009	0.004	0.014
Pile-up		0.003	0.002	0.007
Luminosity		0.016	0.016	0.016
Theoretical a	and modelling uncer	rtainties		
Signal		0.052	0.048	0.072
Z + jets		0.032	0.013	0.059
W + jets	0.040	0.079	0.009	
$t\bar{t}$		0.021	0.046	0.029
Single top qu	ıark	0.019	0.048	0.015
Diboson		0.033	0.033	0.039
Multi-jet		0.005	0.017	0.005
MC statistics	sl.	0.031	0.055	0.038

Search for $H \to b\bar{b}$ decays in VBF($+\gamma$) events with 25 – 31 fb⁻¹ of 13 TeV data



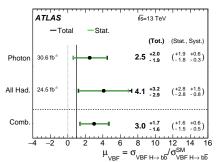
All-hadronic Channel

- Select two b-tagged jets along with "typical" VBF selection (two jets with a large $\Delta\eta$)
- BDT trained on kinematic variables used to define VBF rich categories, m_{bb̄} used as primary S/B discriminant

Photon Channel

- Similar to all-hadronic channel with additional requirement of a reconstructed isolated photon
- Photon effective in reducing dominant gluon-rich bbjj background, enriching VBF purity

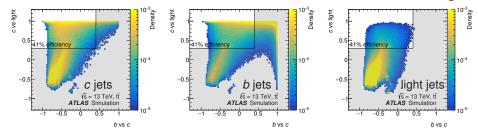
 $m_{b\bar{b}}$ distributions for highest purity categories shown for both channels (right \uparrow)


$H ightarrow bar{b}$ with VBF production II (arXiv:1807.08639)

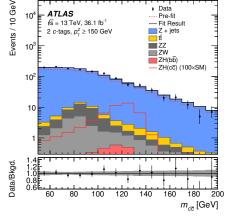
Approaching SM sensitivity, combined observed (expected) 95% CL upper limit on $\sigma(pp \to qq'(\gamma)H) \times \mathcal{B}(H \to b\bar{b})$ of 5.9(3.0^{+1.3}_{-0.8})

- Sensitivity dominated by statistical uncertainty
- Experimental uncertainties dominanted by understaning of jet performance

	ATLAS VS=13 TeV					
	—Total —Stat.					
		1			(Tot.)	(Stat., Syst.)
Photon	30.6 fb ⁻¹	-	-	2.3	+1.9 - 1.7	(+1.7 +0.6 -1.7 -0.2)
All Had.	24.5 fb ⁻¹		-	2.7	+2.2 - 2.0	(+1.9 +1.1 (-1.9 -0.6)
Comb.		-		2.5	+1.4	(+1.3 +0.6 (-1.3 -0.4)
	-2 0	2	4	6 μ ₋		B 10 √σ SM → bb H→ bb


Uncertainty	$\sigma(\mu_H)$	$\sigma(\mu_{VBF})$	
Total stat. uncertainty	+1.3 - 1.3	+1.6 - 1.5	
Data stat. uncertainty	+0.6 -0.6	+0.9 -0.9	
Non-resonant bkg	+1.0 -1.0	+1.2 - 1.2	
Z+jets normalization	+0.5 -0.5	+0.5 -0.5	
Total syst. uncertainty	+0.6 -0.4	+0.6 -0.5	
Higgs boson modeling	+0.3 -0.1	+0.2 -0.1	
JES/JER	+0.3 -0.2	+0.4 -0.2	
b-tagging (incl. trigger)	+0.2 -0.1	+0.2 -0.1	
Other exp. uncertainty	+0.4 -0.3	+0.4 -0.4	
Total	+1.4 - 1.3	+1.7 - 1.6	

Measured signal strength for inclusive production (left) and VBF production (right) assuming SM contributions from ggH, VH, $t\bar{t}H$ production

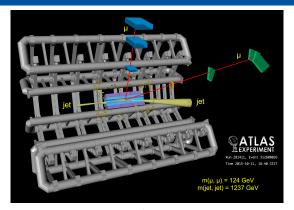

Given the success of the W/Z associated production channel in discovering $H\to b\bar b$ decays, this channel is an obvious first candidate for a $H\to c\bar c$ search

- $\mathcal{B}(H \to c\bar{c}) \approx 3\%$, like $H \to b\bar{b}$ but harder!
- Focus on ZH production with $Z \to e^+e^-$ and $Z \to \mu^+\mu^-$ decays for first ATLAS analysis
- Use c-tagging algorithms

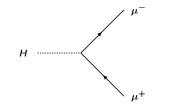
- Multivariate discriminant(s) built from input variables from low-level b-tagging algorithms (e.g. track impact parameter likelihood, secondary vertex finder)
- lacktriangledown Optimal working point offers 41% c-jet efficiency for factor 4× b-jet and 20× light flavour jet rejection

 $m_{c\bar{c}}$ distribution for the (most sensitive) 2 c-tag $ho_{\rm T}^{\rm Z} > 150$ GeV category

Analysis Strategy

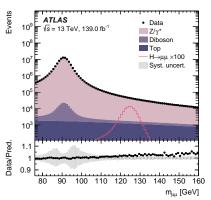

- Categorise events by p_T^Z and c-tag multiplicity (1 or 2)
- Use $m_{c\bar{c}}$ as S/B discriminant

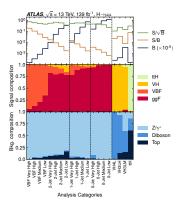
Limits on $ZH(c\bar{c})$ production


- No evidence for ZH(cē) production with current dataset (as expected)
- Upper limit of $\sigma(pp \to ZH) \times \mathcal{B}(H \to c\bar{c}) < 2.7 \, \mathrm{pb}$ set at 95% CL, to be compared to an SM value of $2.55 \times 10^{-2} \, \mathrm{pb}$
- Corresponds to 110× the SM expectation

Far from SM sensitivity, but most stringent direct constraint on H o c ar c decays!

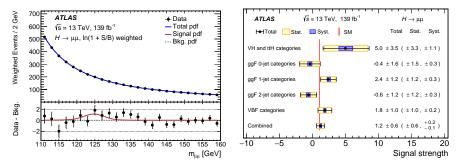
Expect $Z(\ell\ell)H(c\bar{c})$ channel alone to reach sensitivity to few times SM expectation with HL-LHC (see ATL-PHYS-PUB-2018-016), bright prospects!


Candidate VBF $H \rightarrow \mu^+\mu^-$ event in 13 TeV data

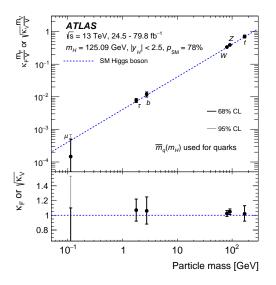


- Tree level decay, directly sensitive to $H\mu\mu$ Yukawa coupling
- Small branching fraction for $m_H=125$ GeV at $\mathcal{B}(H \to \mu^+\mu^-) \approx 2 \times 10^{-4}\%$
- Most promising channel to study Higgs boson coupling to second generation fermions

Perhaps the most promising probe of SM Higgs coupling to second generation


- ATLAS search recently updated with 139 fb⁻¹ of 13 TeV data
- Dominant backgound is $Z \to \mu^+\mu^-(+{\rm jets})$, exploiting Higgs production modes can help reduce this substantially
- In events with exactly two muons, classify with BDTs trained with production mode sensitive variables

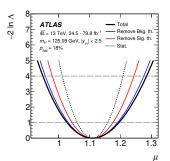
Relative sensitivity of the analysis categories \


 $m_{\mu^+\mu^-}$ used as S/B discriminant, fit to each category using analytic functions for signal and background shape, weighted sum of fit results shown below

Approaching sensitivity to SM prediction!

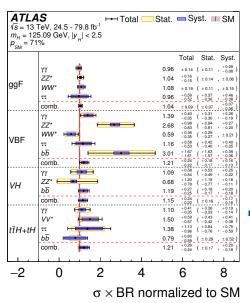
- lacksquare Observed (expected) significance $2.0(1.7)\sigma$, measured signal strength $\mu=1.2\pm0.6$
- Sensitivity driven by VBF targetted categories, still very much limited by statistics

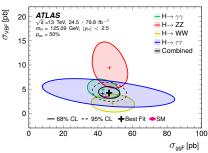
Latest ATLAS 125 GeV Higgs combination with 13 TeV data



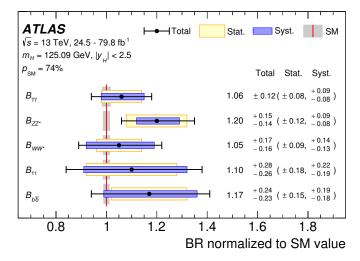
Reduced coupling strength modifiers as a function of fermion/boson mass, assuming no BSM contributions to Γ_H and the SM structure of loop processes

Latest combination of ATLAS measurements with all main channels probes compatibility with SM production/decay properties


- Methodology similar (e.g. κ framework etc.) to well known Run 1 ATLAS+CMS combination (arXiv:1606.02266)
- All performed with 13 TeV data, several channels updated with 80 fb⁻¹ dataset


Analysis	Dataset	Integrated luminosity [fb ⁻¹]
$H \rightarrow \gamma \gamma$ (including $t\bar{t}H, H \rightarrow \gamma \gamma$)		79.8
$H \rightarrow ZZ^* \rightarrow 4\ell$ (including $t\bar{t}H$, $H \rightarrow ZZ^* \rightarrow 4\ell$)	2015-2017	79.8
$VH, H \rightarrow b\bar{b}$		79.8
$H \rightarrow \mu\mu$		79.8
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$		36.1
$H \rightarrow \tau \tau$		36.1
VBF, $H \rightarrow b\bar{b}$	2015–2016	24.5 - 30.6
$t\bar{t}H, H \rightarrow b\bar{b}$ and $t\bar{t}H$ multilepton		36.1
$H \rightarrow \text{invisible}$		36.1
Off-shell $H \to ZZ^* \to 4\ell$ and $H \to ZZ^* \to 2\ell 2\nu$		36.1

\leftarrow Global signal strength $\mu = 1.11^{+0.09}_{-0.08}$


- Combined measurements lead to observed (expected) significance for VBF production of $6.5(5.3)\sigma$
- VBF now observed by ATLAS experiment alone (following observation with ATLAS+CMS Run 1 combination)

Despite "hints" at $\geq 1\sigma$ deviations in global signal strengths for individual channels, combined measurements very compatible with SM

Branching fractions relative to SM prediction

Measured under the assumption of SM production

The experimental characterisation of the 125 GeV Higgs boson is advancing rapidly, many ATLAS/CMS results now use with full (140 ${\rm fb}^{-1}$) Run 2 dataset!

- Around 90% of total width (by SM expectation) is now accounted for experimentally
- All main production mechanisms have also been unambiguously observed
- To date, all measurements seem to indicate properties in very good agreement with the SM!
- However, surprises may be lurking in the very poorly studied couplings to the first and second generation fermions
- Remember, the Yukawa picture is really just an "effective" description, new physics is required to understand the fermion mass heiracy!