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OVERVIEW
What is Astroparticle Physics?2



WHAT IS ASTROPARTICLE PHYSICS?

 Various definitions!  Mine is
the use of particle physics technology to study 
astrophysical phenomena

 Included:
 neutrino astrophysics
 gamma-ray astronomy
 cosmic rays
 dark matter
 early-universe cosmology

 Sometimes also included:
 cosmic microwave background
 gravitational waves
 neutrino masses (especially 0νββ)
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coherent field 
with a lot of 
common factors

someone else’s 
problem!

not very particulate

not very astrophysical

High Energy 
Astroparticle 
Physics



COMMON ISSUES

 Low rates
 fluxes of high-energy particles are small
 neutrinos and dark matter have weak interactions

 Need for large detectors
 No control over “beam”

 harder to control backgrounds
 harder to calibrate, e.g., energy resolution

 Signals can be difficult to establish and/or characterise
 cf. solar and atmospheric neutrino oscillation 
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RELATED FIELDS

 Neutrino physics
 atmospheric neutrinos are “astroparticle physics” but have 

contributed more to understanding of neutrinos than to 
astrophysics

 similar situation for solar neutrinos
 long-baseline neutrino experiments can do low-energy 

neutrino astrophysics “for free” (and vice versa)
 Nucleon decay

 many detector technologies useful for both
 original purpose of Kamiokande (NDE = Nucleon Decay Experiment 

not Neutrino Detection Experiment!)
 planned noble-liquid detectors may be able to do both nucleon 

decay experiments and dark matter searches 5



TOPICS TO BE COVERED

 High energy astroparticle physics 
(cosmic rays, gammas, high-energy neutrinos)
 sources
 detection
 results
 prospects

 Dark matter
 evidence
 candidates
 search techniques
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NOT COVERING:
  solar neutrinos (SB)
  neutrino masses (SB)
  supernova neutrinos (no time)



HIGH ENERGY ASTROPARTICLE 
PHYSICS
Acceleration Mechanisms

Sources

Detection 
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COSMIC ACCELERATORS

 Cosmic rays and gamma rays 
are observed up to extremely 
high energies

 something must therefore
accelerate them
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109  eV                                              1021

Note the power-law 
spectrum



ACCELERATION MECHANISMS

 Fermi Mechanism
 energetic charged particles can gain energy by scattering off 

local magnetic turbulence (Fermi 1949)
 Assume particle scatters off much more massive object moving with 

speed u.  Then in the com frame (= frame of massive object) its 
energy and momentum before the scatter are

 The particle scatters elastically: its energy is conserved and its x-
momentum reversed.  In original (lab) frame
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ACCELERATION MECHANISMS
 Fermi Mechanism

 energetic charged particles can gain energy by scattering off 
local magnetic turbulence (Fermi 1949)
 We need to average over angle.  Head-on collisions are slightly more 

likely than overtaking collisions, so middle term doesn’t just go away.  
In relativistic limit we find

 Hence this process is known as second-order Fermi acceleration.
 The good news

 this produces a power law energy spectrum: N(E) ∝ E−x where 
x = 1 + 1/ατ, α is the rate of energy increase and τ is the residence 
time of the particle

 The bad news
 since u << c, it’s slow and inefficient
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ACCELERATION MECHANISMS

 First-order Fermi Mechanism 
(Diffusive Shock Acceleration)
 O(u/c) term gets lost in integral over 

angles—we could retrieve this if we 
could arrange to have only head-on scatters

 Consider shock wave as sketched above
 high-energy particles will scatter so that their distribution is isotropic in 

the rest frame of the gas

 crossing shock in either direction produces head-on collision on average
11

u0u0 − VDS Rest frame of 
shock

VDS Rest frame of 
upstream gas

VDS
Rest frame of 
downstream 
gas

Don Ellison, NCSU



ACCELERATION MECHANISMS

 DSA, continued
 shock compresses gas, so 

density behind shock ρ2 > ρ1

 in rest frame of shock, ρ1u0 = ρ2u2 where u2 = u0 − VDS 
 for strong shock ρ2/ρ1 = (γ + 1)/(γ − 1) where γ is ratio of specific 

heats (= ⁵/₃ for hydrogen plasma)
 therefore expect u2/u0 ≈ ¼
 gas approaches shock-crossing particle at speed V = ¾ u0

 if high-energy particles move randomly, probability of particle 
crossing shock at angle θ is P(θ) = 2 sin θ cos θ dθ, and its energy 
after crossing shock is E’ ≈ E(1 + pV cos θ) (if V << c)

 therefore average energy gain per crossing is 
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ACCELERATION MECHANISMS

 DSA spectrum
 if average energy of particle after one collision is E1 = fE0, and if 

P is probability that particle remains in acceleration region, 
then after k collisions there are Nk = N0Pk particles with average 
energy Ek = fkE0.

 Hence                             , or

 This is the number of particles with E ≥ Ek (since some of these 
particles will go on to further collisions), so differential 
spectrum is  

 for DSA this comes to N(E) dE ∝ E−(r + 2)/(r − 1) dE, where r = ρ2/ρ1.
 “universal” power law, independent of details of shock 
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ADDITIONAL COMPLICATIONS

 Above was a “test particle” approach, in which we 
assume most of the gas is unaffected
 If acceleration is efficient, high momentum particles will 

modify the shock
 Need a consistent treatment

which takes proper account 
of this
 mathematically challenging
 but valid across very large

range of particle energies
 Also need to allow for 

possibility of relativistic shocks
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RELATIVISTIC SHOCKS

 DSA assumes non-relativistic 
shock

 Many astrophysical objects 
(γ-ray bursts, AGN) are known 
to host relativistic shocks ( ~ 10 for AGN, up to 1000 for GRBs)
 these can produce much larger accelerations 
 first return crossing causes energy gain of order 2

 second and subsequent crossings “only” factor 2, because particle does not 
have time to scatter to random orientation before shock overtakes it

 produces a somewhat steeper spectrum, spectral index ~2.4
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Lemoine & Pelletier 2003



TYCHO’S SUPERNOVA (SN 1572)
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Shock front seen in high-energy electrons
“Stripes” may signal presence of high-
energy protons 

Chandra



RADIO GALAXIES
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13 cm wavelength ATCA image by L. Saripalli, 
R. Subrahmanyan and Udaya Shankar

B1545-321

3C 273 jet

Chandra, HST, Spitzer

Cygnus A in X-ray (Chandra) and radio (VLA)



PULSAR MAGNETIC FIELDS
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“striped wind”

Magnetic reconnection has been 
proposed as an explanation for 
fast γ-ray flares in Crab Nebula



PHOTONS AND NEUTRINOS

 High-energy photons and neutrinos are secondary particles 
produced by interactions of high-energy  primaries.
 production mechanisms:
 inverse Compton scattering (photons only)

 Low-energy photon backscatters off high-energy electron.
In electron rest frame we have
Δλ = h(1−cos θ)/mc2.

In lab frame, maximum energy gain 
occurs in head-on collision:
ν ≈ 4γ2ν0 

Because of relativistic
aberration, spectrum is 
sharply peaked near maximum 19



PHOTONS AND NEUTRINOS
 inverse Compton scattering (continued)

 Plot shows calculated spectrum for
monoenergetic photons and electrons.

 Plenty of potential sources of low-energy
photons to be upscattered:
 synchrotron radiation produced by the

same population of fast electrons
(synchrotron-self-Compton, SSC)

 cosmic microwave background
 optical photons from source  

 For real objects, need to integrate over power-law spectrum of 
electrons and spectrum of photon source
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PHOTONS AND NEUTRINOS

 High-energy photons and neutrinos are secondary particles 
produced by interactions of high-energy  primaries.
 production mechanisms:
 pion decay (photons and neutrinos)

 pions produced by high-energy proton colliding with either matter or 
photons (pion photoproduction)

 neutral pions decay to γγ, charged to μνμ

 mechanism produces both high-energy γ-rays and neutrinos

 Both mechanisms need population of relativistic charged 
particles
 electrons for IC, protons for pion decay

 Unclear which dominates for observed TeV γ-ray sources 21



SPECTRUM OF SUPERNOVA REMNANT RXJ 
1713.7−3946 
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ATCA

Suzaku

Fermi 
LAT

HESS

Spectrum is consistent with high-energy electrons only: synchrotron 
radiation (radio → x-ray) plus inverse Compton effect (γ-rays)
Expect this SNR not to produce high-energy neutrinos



SPECTRUM OF SN1572 (TYCHO’S SN) 
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Spectrum seems to prefer π0 decay—shape wrong for IC
This SNR should produce high-energy neutrinos



ACCELERATION: SUMMARY
 Observations made in high-energy astroparticle physics require 

that charged particles be accelerated to very high energies 
(~1020 eV)

 Likely candidate is diffusive shock acceleration
 requirement of shocks associated with magnetic fields found in many 

astrophysical objects, especially supernova remnants and AGN
 synchrotron radiation from these objects direct evidence for 

population of fast electrons
 much less evidence for presence of relativistic hadrons, but there 

must be some somewhere since we observe them in cosmic rays!
 TeV γ-rays can be produced by fast electrons using inverse 

Compton scattering, or by fast protons from π0 decay
 latter will also make TeV neutrinos, not yet observed 24



HIGH ENERGY ASTROPARTICLE 
PHYSICS
Acceleration Mechanisms

Sources

Detection
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GAMMA-RAY ASTRONOMY

 Well-established branch of high-energy astrophysics
 most work done at modest energies (few 10s of MeV)

 some, e.g. EGRET, out to few 10s of GeV
 this is not usually regarded as astroparticle physics

 though EGRET catalogue sometimes used as list of candidates for, e.g., 
neutrino point source searches

 Atmosphere is not transparent to gamma rays
 low and medium energy γ-ray astronomy is space-based

 CGRO, SWIFT, GLAST, INTEGRAL, etc.
 space platforms not suitable for TeV γ-ray astronomy

 too small!
 therefore very high energy γ-ray astronomy is a ground-based 

activity
 detect shower produced as γ-ray enters atmosphere
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FERMI-LAT 3RD POINT SOURCE CATALOGUE
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TEV GAMMA-RAY SKY
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from TeVCat, http://tevcat.uchicago.edu/



GAMMA-RAY SOURCES

 From maps, clearly mixed Galactic and extragalactic
 extragalactic sources of TeV γs are mostly blazars (a class of 

AGN where we are looking down the jet)
 identified Galactic sources are SN-related (supernova 

remnants and pulsar wind nebulae), plus a few binary 
compact objects

 dark/unidentified objects associated with Galactic plane, 
therefore presumably Galactic

 SNRs and AGN are suitable environments for particle 
acceleration
 shocks, magnetic fields, synchrotron emission
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PULSAR WIND NEBULA: THE CRAB
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TeV gamma-ray signal as 
observed by HEGRA 
(Aharonian  et al. 2004)

Medium-energy γ-ray flare observed 
by AGILE (Tavani  et al. 2011)



PULSAR WIND NEBULA: THE CRAB
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Crab spectral energy distribution 
showing September 2010 flare

TeV energy spectrum



BLAZAR: MKN 421
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Mkn 421 and 
companion galaxy.
Aimo Sillanpaa, 
Nordic Optical 
Telescope.
(Above: very boring 
X-ray image by 
Chandra)

Highly variable (typical of blazars)
Spectrum varies according to state



COSMIC RAY SOURCES
 Observations of cosmic rays now span about 100 years
 However, sources are not definitively established

 Galaxy has a complex magnetic
field which effectively 
scrambles direction of 
charged particles

 Gamma ray luminosity
requires fast particles,
but maybe only electrons
 therefore, observation of

γ-rays does not definitively
establish source as a cosmic
ray factory

 Neutrino luminosity does 
require fast hadrons
 but no neutrino point sources  

yet
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Vallée, ApJ 681 (2008) 303



COSMIC RAY SOURCES
 General dimensional analysis suggests 

Emax [GeV] ≈ 0.03 η Z R[km] B[G] (Hillas condition)
 basically requires particles to remain confined in accelerating region
 quite difficult to satisfy for highest-energy CRs

 plot shows 
neutron stars
white dwarfs
sunspots
magnetic stars
active galactic nuclei
interstellar space
supernova remnants
radio galaxy lobes
disc and halo of Galaxy
galaxy clusters
intergalactic medium
gamma-ray bursts
blazars
shock-wave velocities
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Torres & 
Anchordoqui, 
astro-ph/0402371 



COSMIC RAY SOURCES

 Amount of magnetic deflection decreases with increasing 
energy
 highest energy events might remember where they came from...

 Pierre Auger Observatory 
initially observed
correlation between
arrival directions of
CRs above 55 EeV
and a catalogue
of AGN

 however, with more
data significance went 
down (not up!)

 currently (2018), no statistically significant correlation with 
galaxy surveys, nearby AGN/radio galaxies, or Centaurus A
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COSMIC RAY SOURCES: SUMMARY

 CRs up to about 1015 eV or so assumed to come from SNRs
 but they don’t provide good directional information, so this 

remains to be confirmed
 neutrino observations, or definitive proof that some SNR γ-rays originate 

from π0 decay

 Ultra-high energy CRs may come from local AGN 
 however, arrival directions do not show significant correlation

 this is not unexpected if UHEC CRs are heavy nuclei, as higher charge 
implies more deflection by magnetic fields

 composition of UHE CRs is currently unclear, as experiments disagree
 note that intergalactic space is not completely transparent to 

UHECRs—see later—so distant AGN (beyond ~100 Mpc) are 
assumed not to contribute 36



NEUTRINO SOURCES

 Known sources of low-energy (0.1−100 MeV) neutrinos:
 Sun
 SN 1987A

 Known point sources of high-energy neutrinos:
 None (some events, but no significant clusters)

 to be fair, this is as expected for current exposure times

37

IceCube search 
for point sources.
No significant 
excess found yet.



SOURCES: SUMMARY

 TeV gamma rays are observed from a variety of sources, 
primarily SNRs within the Galaxy and blazars outside
 clear evidence of charged particles accelerated to very high 

energies, but whether electrons or hadrons is unclear
 Cosmic ray sources are difficult to pinpoint because CRs 

are strongly deflected by the Galactic magnetic field
 SNRs suspected to be source of CRs at <1015 eV
 local AGN may be responsible for highest energy CRs

 Observations of high energy neutrinos would solve the 
mystery, but no clear point sources yet
 situation should improve after a few more years of IceCube 

running 38
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