

ASTROPARTICLE PHYSICS LECTURE 3

Matthew MalekUniversity of Sheffield

High Energy Astroparticle Physics

Acceleration Mechanisms
Sources
Detection

Neutrino Detection

- Neutrino cross-section rises with energy
- Only UHE neutrinos (>10¹⁵ eV)
 interact with reasonably high
 probability (such that Earth is
 opaque to them)

Connolly, Thorne & Waters, hep-ph/1102.0691v1

Neutrino Detection (Penetrating Neutrinos)

- Mostly rely on detecting the charged lepton produced in CC interactions
 - at lowest energies (solar neutrinos), also elastic scattering $(v + e \rightarrow v + e)$ & NC on deuterium $(v + d \rightarrow v + p + n)$
 - note that at solar neutrino energies μ and τ cannot be produced by CC, so ν_{μ} , ν_{τ} only seen in NC (e.g., SNO)
- Some early experiments using tracking calorimeters, but water Cherenkovs are now standard practice
 - can obtain large effective volumes by instrumenting natural bodies of water/ice
 - particle identification by ring morphology at low energies, shower shape at high energies

Neutrino Detection by Water Cherenkov

Backgrounds

- Cosmic ray muons
 - Go deep
 - Look down
 - therefore, northern hemisphere telescope sees southern sky, and vice versa
- Atmospheric neutrinos
 - one person's signal is another's background!
 - irreducible, but steeper spectrum than high-energy astrophysical neutrinos

Particle ID: Super-Kamiokande

Particle

Super-Kamiokande I

Run 1728 Sub 4 Ev 25171 96-05-29:08:01:53 Inner: 2294 hits, 7095 pB Outer: 4 hits, 32 pE (in-time) Trigger ID: 0x03 0 wall: 592.8 cm PC mu-like, p = 1012.9 MeV/c

muon: sharp ring

Particle ID: IceCube

 \sim km-long muon tracks from ν_{μ}

~ 10m-long cascades from v_0 , v_τ

"double-bang" ν_{τ} event: initial signal from CC interaction, later one from τ decay

Halzen & Klein, Rev. Sci. Inst. **81** (2010) 081101

High-Energy Neutrino Telescopes

Lake Baikal

- 1. Central core (NT200) with 96 pairs of OMs on 8 strings
- Outer ring with 3 additional strings each equipped with 6 OM pairs
- 3. Lasers for calibration

Each OM equipped with 37-cm PMT

ANTARES

2475 m deep, 42 km off Toulon

885 OMs arranged in triplets on 12 lines; each OM equipped with 10" PMT

Acoustic transponders for position

monitoring

LED and laser optical bea calibration

IceCube

The largest existing detector, instrumenting 1 km³ of Antarctic ice.
Precursor, AMANDA II, very similar to ANTARES in size and

sensitivity.

13

Medium Properties

Property	Lake Baikal	Mediterranean (ANTARES)	Antarctic ice
Absorption length (m)	20-24	50-70 (blue)	~100
Scattering length (m)	30-70	230-300 (blue)	~20
Depth	1370	2475	2450
Noise	Quiet	40K, bioluminescence	Quiet
Retrieve/ redeploy	Yes	Yes	No

Long scattering length for ANTARES implies better angular resolution; long absorption length for IceCube implies sparser instrumentation. Quiet environments imply potentially useful data from singles rates.

Background in Antares E 150 g 150

- Three components
 - steady background of ~60 kHz

- slowly varying contribution from bioluminescence, probably bacterial
- short bursts of strong bioluminescence, probably from larger organisms
- Correlated within a single storey, but not over long distances
 - minimal influence on tracking efficiency
 - does probably preclude use of singles rate, e.g. for detection of low energy neutrinos from supernova

Light Transmission in IceCube

Scattering is a consequence of dust layers in the ice—function of global climate, level of volcanic activity, etc.

"Dust logger" measures reflected light from artificial light source just after drilling: measure scattering with few mm vertical resolution.

Note additional contribution from bubbles at shallow depths (<1400 m); IceCube deployed below this level.

Angular Resolution

At 100 TeV: Amanda ~2°
Antares ~ 0.2°

Moon's shadow in CR muons, measured by IceCube

Expected IceCube angular resolution ~0.5°

Expected Fluxes

- Expect high-energy astrophysical neutrinos to be produced in proton interaction cascades
 - therefore, observed CR flux implies upper bound on neutrino flux (Waxman-Bahcall bound: Phys. Rev.

Bahcall bound: Phys. Rev. D59 (1998) 023002)

- from observed CR rate, deduce that the amount of energy emitted by astrophysical sources in the form of UHE CRs (10^{19} 10^{21} eV) is of order 10^{37} J Mpc⁻³ yr⁻¹.
 - $^{\circ}$ assume that CRs lose some fraction arepsilon of their energy through pion photoproduction before escaping the source
 - fraction of proton energy carried by neutrino produced in this way is about 5% independent of proton energy, so neutrino energy spectrum follows scaled-down version of proton spectrum
- resulting bound: $Ev2\phi v < 2\times10^{-8}$ GeV cm⁻² s⁻¹ sr⁻¹ for 10^{14} – 10^{16} eV \overline{v}

Results

Still very statistics-limited. IceCube should be able to reach Waxman-Bahcall bound.

Point source search ANTARES astro-ph/1002.0701

Limits on diffuse fluxes ANTARES, *Phys. Lett.* **B696** (2011) 16 IceCube, astro-ph/1101.1692

More Results

Statistical evidence for HE astrophysical neutrinos found in IceCube Sources not yet identified...

Next Generation Water Cherenkovs

Next Generation Water Cherenkovs

Baikal-1000

Next Generation Water Cherenkovs

IceCube Gen2:

Tau-Neutrino Detection By Air Showers

- Earth-skimming v_{τ} interacts in Earth's crust to produce τ
- τ decay in atmosphere initiates characteristic air shower
 - shower appears to be in early stage of development—typical horizontal shower is "old"
 - searched for by Auger—no signal (*PRD* **79** (2009) 102001)

High Energy Astroparticle Physics

New Detection Techniques

25

Radio-Frequency Detection of Air Showers and Neutrinos

- Geosynchrotron emission (10–100 MHz)
 - synchrotron radiation from air-shower particles gyrating in Earth's magnetic field
 - advantages over fluorescence:
 - very high duty cycle (only wiped out by thunderstorms)
 - low attenuation (so, large effective area)
 - disadvantages:
 - interference (need radio-quiet sites)
 - high threshold (10¹⁷ eV)
- Radio Cherenkov (Askaryan effect) (0.1–2 GHz)
 - Cherenkov emission from neutrino-induced showers because of net negative charge
 - initially neutral shower develops ~20% negative bias because of annihilation of e+ and additional e- from Compton scattering etc.
 - requires dense, radio-transparent medium
 - not air, not water

Geosynchrotron Emission

- Studies run in association with Auger and KASCADE CR ground arrays
- A declared key science goal of LOFAR Collaboration

LOFAR

LOw Frequency Array Radio (based in the Netherlands)

Mostly a radio astronomy facility, but good prospects for radio detection of UHECRs (see LOPES/KASCADE).

Also good for gravitational wave follow-up (excellent wide-field coverage)

LOPES/KASCADE

- KASCADE: scintillator-based ground array
- LOPES (LOFAR PrototypE Station)
 - initially 10, now 30, low-frequency RF antennas triggered by KASCADE "large event" trigger
 - KASCADE reconstruction provides input to LOPES recon:
 - core position of air shower
 - its direction
 - its size

LOPES/KASCADE

- First detection: January 2004
 - strong coherent radio signal coincident with KASCADE shower
 - reconstruction location agreed with KASCADE to 0.5°
- Extensive data sample now accrued
 - technique works well and suggested full LOFAR array (completed 2012) should be

excellent CR detector

LOFAR as a cosmic ray detector

- Small scintillator-based air-shower array (LORA) set up in LOFAR core
 - plastic scintillator detectors from KASCADE, set up in 5 sets of 4
 - estimated energy resolution ~30%, angular resolution ~1%
 - combined running with LOFAR radio signals

Thoudam et al., astro-ph/1102.0946v1

Auger/AERA

- Preliminary studies using a few radio antennas at the Auger site gave promising results
- Plan to instrument 20 km²
 near Coihueco fluorescence
 telescope with 150
 autonomous self-triggering
 radio antennas
 - 5000 events/year expected, 1000 above 10¹⁸ eV
- Currently 124 radio stations covering 6 km² aperture

Askaryan Effect

- Effect demonstrated in sand(2000) rock salt (2004) and ice (2006)
 - all done in laboratory at SLAC
- Applications to neutrino detection
 - using the Moon as target
 - GLUE (detectors are Goldstone RTs)
 - NuMoon (Westerbork array; LOFAR)
 - RESUN (EVLA)
 - using ice as target
 - FORTE (satellite observing Greenland ice sheet)
 - RICE (co-deployed on AMANDA strings, viewing Antarctic ice)
 - ANITA (balloon-borne over Antarctica, viewing Antarctic ice)

Askaryan Effect: ANITA

Askaryan Effect

Jaeger et al., Astropart. Phys. **34** (2010) 293

- ANITA observed UHECRs (geosynchrotron signal)
- Nobody saw neutrinos (sadly)

Acoustic Detection (Showering Neutrinos)

- UHE (>1 PeV) neutrinos interact fairly readily
 - on entering dense medium (water) they will initiate shower
 - this dumps energy in a thin cylinder (\sim 20 m \times 20 cm)
 - resulting pressure pulse spreads out from this cylinder in thin "pancake" perpendicular to incoming neutrino direction
 - produces characteristic bipolar acoustic pulse which can be detected by hydrophone array
 - advantages
 - extremely long attenuation length (several km)
 - very large volume can in principle be instrumented with relatively small number of hydrophones
 - hydrophone technology well established in underwater applications
 - can use off-the-shelf hardware
 - disadvantages
 - the sea is a very noisy place
 - identifying signal very challenging

Principles

Experiments

- ACORvE
 - UK feasibility study using military hydrophone array off Rona
- AMADEUS
 - co-deployed with ANTARES
- Lake Baikal
 - co-deployed with Baikal-200
- ONDE
 - part of NEMO (NEutrino Mediterranean Observatory)
 - NB: <u>NOT</u> Neutrino Ettore Majorana Observatory!
- SAUND-I and SAUND-II
 - in Bahamas, originally using military array, now extended
- SPATS
 - at South Pole, associated with IceCube

ACORVE

- MoD hydrophone array off NW coast of Scotland
 - successful R&D project showing feasibility of technique
 - array geometry not optimal (not designed for neutrinos!)

Example of background source— dolphin clicks!

AMADEUS

- Acoustic storeys added to ANTARES strings
 - R&D project comparing different hydrophones
 - feasibility study for KM3NeT

Acoustic Storey (Pointing Down)

Buoy

0.05

Time (ms)

0.1

Acoustic Storey (Standard)

SPATS

- Acoustic sensors on strings deployed in association with IceCube
 - very good at detecting IceCube drilling and water storage activities!

-200

0

x [m]

200

400

Acoustic Detection: Summary

- Experiments so far are R&D projects/feasibility studies
 - limits not competitive with radio at present
- Future strategy mostly co-deployment with large optical Cherenkovs
 - improves high-energy sensitivity

 most nearly realised at South Pole with IceCube/IceTop/RICE/SPATS

Neutrino Detection: Summary

- High-energy neutrinos could provide information on
 - acceleration processes in high-energy astrophysics
 - GZK cut-off in cosmic rays
 - dark matter (see next lecture)
- Detection still in infancy
 - only IceCube has been large enough
- Various promising techniques
 - water Cherenkov at lower energies
 - radio and possibly acoustic at high end
- Hybrid experiments feasible at many sites