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Calorimetry

• Wide usage in particle physics, e.g.

4π (or LHCb-like) collider experiments

Instrumented targets 

Shower counters


• Various detection mechanisms

Scintillation

Ionisation

Cerenkov

Cryogenics
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Typical collider detector schematic

• Tracking system is ideally massless 


• Calorimeter is massive and should totally absorb the 
energy of a particle [or jet] in 1 GeV to 1 TeV range.


• Electromagnetic and hadronic calorimeters.
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The basic idea

• Stop/contain particle/jet by shower and absorption processes.


• Convert energy to signal with ionisation, scintillation etc..


• Linearity and good resolution desirable.


• Direction measurement for neutral particles.


• Missing transverse energy in ~4π detectors.


• Intrinsically fast → triggering.
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Electromagnetic and hadronic shower processes
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Interplay with stable visible particles

• Charged hadrons (π, K, p)

Hadronic showers


• Electrons and photons

Electromagnetic showers


• Neutral hadrons (n, KL)

Hadronic showers


• Muons

Minimum ionising (track in calorimeter)
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Linearity

• Readily achieved in EM calorimeters

Non-linearity can still be caused by, e.g., shower leakage,  
variation of response with depth, saturation of electronics 
etc…


• Hadronic calorimeters are intrinsically non-linear…
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Complementarity with tracking
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Electron interactions with matter
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rpp2019-rev-passage-particles-matter

https://pdg.lbl.gov/2019/reviews/rpp2019-rev-passage-particles-matter.pdf
https://pdg.lbl.gov/2019/reviews/rpp2019-rev-passage-particles-matter.pdf


Bremsstrahlung: dominant for electrons at high energy
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Radiation length* (X0)
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E = E0e−x/X01
E ( dE

ρdx ) = −
1
X0

X0 ∼ [180
g

cm2 ] A
Z2

σbrem ∝ Z2

~Density of scattering centres
Approximation:

👍if we express material thickness in X0 then the radiation loss is 
independent of material.



Material dependence
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rpp2019-rev-particle-detectors-accel

👍 X0/ρ is a convenient quantity [with length units].

https://pdg.lbl.gov/2019/reviews/rpp2019-rev-particle-detectors-accel.pdf
https://pdg.lbl.gov/2019/reviews/rpp2019-rev-particle-detectors-accel.pdf


The critical energy (Ec),
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at which Brem. and ionisation losses are equal.

∼
Z
A

β−2

∼ Z2

Ec ≈
600 MeV

Z

rpp2019-rev-passage-particles-matter

Ionisation

Brem

https://pdg.lbl.gov/2019/reviews/rpp2019-rev-passage-particles-matter.pdf
https://pdg.lbl.gov/2019/reviews/rpp2019-rev-passage-particles-matter.pdf


Photon interactions

1. Pair production at high energy


2. Compton scattering at lower energy


3. PE effect at even lower energy

16

λγ ≈
9
7

X0

Low Z

High Z



Electromagnetic shower

• Secondary electrons/photons from pair production 
and bremsstrahlung.


• Number increases but mean energy decreases.


• Ionisation and excitation take over when mean energy 
falls below EC.

17



Shower development
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6 GeV electrons in Pb

Transverse shower extent

characterised by the 

Moliere radius (RM). 



Depth of shower max
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Depth only has log(E) scaling → can build compact calorimeters!



Simple shower model

1. In 1 X0 Electron loses [1-1/e] of energy to Brem


2. Mean free path of photon is 9/7 X0 (pair production)


3. No(only) ionisation/excitation above(below) EC.
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t [X0]



Simple shower model

1. In 1 X0 Electron loses [1-1/e] of energy to Brem
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After t [X0] we have 2t particles with 
energy E/2t


Shower stops when E < Ec, with 
N=E/Ec particles


Shower max at tmax ~ ln(E0/Ec)

t [X0]



Lateral shower development

• Bremsstrahlung and pair production at small angles 
because me is small.
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< θ2 > ∼ (m/E)2

• Multiple coulomb scattering [Mollier theory] of low energy 
electrons dominates lateral spread.

⟨θ⟩ ≈ [ 21 MeV
E ] x

X0

• Characteristic Mollier radius 

RM ≈ [ 21 MeV
Ec ] X0

RM ≈ [7
g

cm2 ] A
Z

RM is a crucial consideration when specifying 
the segmentation (calorimeter cell size).
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6 GeV electrons in Pb



Back of the envelope EM shower characteristics
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Radiation length X0 ∼ [180
g

cm2 ] A
Z2

Critical energy Ec ≈
600 MeV

Z

tmax ≈ ln
E
Ec

Shower max

Lateral RM ≈ [7
g

cm2 ] A
Z



OPAL experiment lead glass
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https://www.mpp.mpg.de/~menke/elss/
https://www.mpp.mpg.de/~menke/elss/


OPAL experiment lead glass
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1 GeV e-

37 x 10 x 10 cm

https://www.mpp.mpg.de/~menke/elss/

https://www.mpp.mpg.de/~menke/elss/
https://www.mpp.mpg.de/~menke/elss/


OPAL experiment lead glass
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10 GeV e-

37 x 10 x 10 cm

https://www.mpp.mpg.de/~menke/elss/

https://www.mpp.mpg.de/~menke/elss/
https://www.mpp.mpg.de/~menke/elss/


OPAL experiment lead glass
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80 GeV e-

37 x 10 x 10 cm

https://www.mpp.mpg.de/~menke/elss/

https://www.mpp.mpg.de/~menke/elss/
https://www.mpp.mpg.de/~menke/elss/
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Sampling
30

Homogenous

σE /E ∼ 10 % / E

σE /E ∼ 1 % / E

Typically:



Sampling
31

σE /E ∼ 10 % / E

Typically:

👍Freedom to independently choose optimal 
absorber and active detector material


👍Dense absorber → compact calorimeters


👍Can be cost effective (cheap absorber)


👎Only the sampling fraction of energy is measured 
→ compromised resolution



Homogenous 
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σE /E ∼ 1 % / E

Typically:

👍Good resolution because all shower particles seen


👍Uniform response → linearity


👎Expensive and limited segmentation

Special use cases e.g. 

1.“medium energy” ECAL-only B-factory experiments,

2.CMS and ultimate H→ƔƔ mass resolution



EM energy resolution
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�E

E
=

Sp
E

� N

E
� C

S: sampling or stochastic term

Fluctuations in the signal generating process 


The ideal calorimeter has E ~ N, σ ~ √N ~ √E


N: noise term

E.g., readout electronics


C: constant term

E.g., Non uniformity, calibration etc…



Examples
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https://pdg.lbl.gov/2019/reviews/rpp2019-rev-particle-detectors-accel.pdf
https://pdg.lbl.gov/2019/reviews/rpp2019-rev-particle-detectors-accel.pdf


Sampling calorimeter designs
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LHCb ECAL 
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“Shashlik” design.

Alternating Pb absorber and 
scintillator.

Energy resolution sampling term 
of approximately

10%/sqrt(E/GeV)



ATLAS LAr ECAL
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Homogenous calorimeters
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CMS ECAL
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CMS ECAL
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UA2 experiment



Hadronic showers

• High energy hadrons interact with nuclei to produce 
secondary hadrons.


• Number of secondary hadrons ~ ln(E).


• Characteristic interaction length λI.


• Multiplication until <E> below [few x mπ].


• Two distinct components
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Detector response to EM and had components is different

Intrinsically poorer resolution.



Hadronic showers
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EM component from π0,η0


Hadronic component

~20% Charged hadrons


~25% Nuclear fragments


~15% neutrons + soft photons


~40% nuclear breakup (invisible)



Nuclear interaction length and containment

• Nuclear integration length





• Typically order of magnitude larger than X0


• Typically require about 10λ for containment


• Hadronic calorimeters are always of the sampling type

λi ≈
1

σtot

A
NA

∼ [35
g

cm2 ] A1/3
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X0 ∼ [180
g

cm2 ] A
Z2



Material dependence
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rpp2019-rev-particle-detectors-accel

https://pdg.lbl.gov/2019/reviews/rpp2019-rev-particle-detectors-accel.pdf
https://pdg.lbl.gov/2019/reviews/rpp2019-rev-particle-detectors-accel.pdf


Hadron shower characteristics

• Large fluctuations in shape/profile!


• Charge hadrons propagate shower over large scale (λ) 


• Local EM showers from π0, η0
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Simulated 50 GeV neutrons on Fe-scintillator stack



Simple hadronic shower model

• Shower is series of interactions producing, on average, 
1/3 π0 and 2/3 π±


• Shower stops when ⟨E⟩ < 3mπ
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…fEM increases with energy

fem = 1 − ( E
Eth )

k−1

fem = 1 − ( 2
3 )

n



Challenge of hadron calorimeters
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And the calorimeter response to the hadronic component tends to 
be smaller than to the electromagnetic component.


The response to hadrons is energy dependent and fluctuates a lot.

Energy dependence of fEM Fluctuations in fEM



Challenge of hadron calorimeters
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Compensation methods [for e/h ≈ 1]

1. Software based

Pattern recognition and reweighing.


2. Reduce EM component

High Z material to filter out photo-electrons.


3. Boost the hadronic response

Organic (hydrogen rich) materials with high neutron cross 
section.


Uranium (nuclear fission triggered by neutrons).
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Not compatible with good EM resolution!

D0 HCAL with U absorber



Some example performances
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LHCb HCAL
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Dual readout R&D (compensation)
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E.g. the original DREAM 
prototype with scintillating 
fibres and quartz fibres that 
have different e/h

Area of ongoing R&D activity



Particle flow
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JINST 12 (2017) P10003

https://arxiv.org/abs/1706.04965
https://arxiv.org/abs/1706.04965


Useful references

Book

Calorimetry: Energy Measurement in Particle Physics, Richard 
Wigmans 


PDG reviews

http://pdg.lbl.gov/2019/reviews/rpp2019-rev-passage-
particles-matter.pdf
https://pdg.lbl.gov/2019/reviews/rpp2019-rev-particle-
detectors-accel.pdf

Animated gifs of shower simulations

https://www.mpp.mpg.de/~menke/elss/home.shtml

56

 

http://pdg.lbl.gov/2019/reviews/rpp2019-rev-passage-particles-matter.pdf
http://pdg.lbl.gov/2019/reviews/rpp2019-rev-passage-particles-matter.pdf
https://pdg.lbl.gov/2019/reviews/rpp2019-rev-particle-detectors-accel.pdf
https://pdg.lbl.gov/2019/reviews/rpp2019-rev-particle-detectors-accel.pdf
https://www.mpp.mpg.de/~menke/elss/home.shtml
http://pdg.lbl.gov/2019/reviews/rpp2019-rev-passage-particles-matter.pdf
http://pdg.lbl.gov/2019/reviews/rpp2019-rev-passage-particles-matter.pdf
https://pdg.lbl.gov/2019/reviews/rpp2019-rev-particle-detectors-accel.pdf
https://pdg.lbl.gov/2019/reviews/rpp2019-rev-particle-detectors-accel.pdf
https://www.mpp.mpg.de/~menke/elss/home.shtml
http://pdg.lbl.gov/2019/reviews/rpp2019-rev-passage-particles-matter.pdf
http://pdg.lbl.gov/2019/reviews/rpp2019-rev-passage-particles-matter.pdf


Backup slides
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Hadronic showers
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UA2 experiment



e/h example
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ZEUS HCAL
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Lateral containment

• Secondary hadrons have pT of a few hundred MeV


• Comparable to energy lost in 1λ


• Characteristic lateral extent of 1λ


• High energy showers have pronounced core with 
exponential halo.
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Moliere radius

An infinite cylinder of radius RM contains 90% of the energy.
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