Class 22: Schrodinger equation in spherical polar coordinates

The Schrodinger equation in three dimensions is
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Here use has been made of the momentum operator
p=—ihV, (22.2)

which is a straightforward generalization of the one-dimensional case. The wave function W is a function

of position r and time ¢.
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For a central force law, the potential energy will depend only on the
distance from the force center. It is then convenient to use spherical

polar coordinates (r, o, ¢)
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In these coordinates, the Laplacian operator is
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and the time independent Schrodinger equation is
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Making use of the angular momentum operator, the time-independent Schrédinger equation is
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Since the angular momentum is a conserved quantity, the Hamiltonian operator and L’ commute and have
a complete set of common eigenfunctions. Thus the angular dependence of the eigenfunctions of the

Hamiltonian operator will be described by a spherical harmonic, ¥;" (0, ¢) for which
'y (6,9) =11 (1+1)Y"(6,9). (22.6)

The radial part of the eigenfunction will then be a solution of
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which can be simplified, by changing to a new dependent variable u (r) =rR (r) , to
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This is identical to the one dimensional Schrodinger equation, except that the potential is replaced by an
effective potential
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For [ # 0, the first term in the effective potential results in a centrifugal barrier which tends to push the

particle away from the force center.

The normalization condition is obtained from
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Consider a particle confined inside a sphere of radius a, by a potential
0, r<a,
V(r)= (22.11)
0, r>a.
The radial function is then a solution of
d*u [ (l + 1)
— ===k |u, (22.12)
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where k* = 2mE/ #” . The boundary conditions are that u = 0 at r = g, and R is non-singular at r = 0.

The solutions of equation (22.12) that satisfy these boundary conditions are

u = Arj, (kr), (22.13)

where j; is a spherical Bessel function of the first kind, and k satisfies j, (ka) =0.

The spherical Bessel functions of the first kind are given by
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Useful recursion relations are
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The spherical Bessel functions of the first kind are shown below for / =0, 1, and 2.
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Because of their dependence on sin x and cos x, the spherical Bessel functions have multiple zeros. If S,

is the n™ zero of ji(x), the energy eigenvalues are
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We see that the energy levels depend on two quantum numbers # and /. The eigenfunctions
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depend on the magnetic quantum number m, and so the energy levels are degenerate. Since for given [, m
can take the values —/, -I+1, ..., I-1, [, we see that there are 2/+1 states with the same energy.



