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Class 22: Schrödinger equation in spherical polar coordinates 

The Schrödinger equation in three dimensions is 
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Here use has been made of the momentum operator 

 ˆ ,i= − ∇p ℏ   (22.2) 

which is a straightforward generalization of the one-dimensional case. The wave function Ψ  is a function 

of position r and time t. 

For a central force law, the potential energy will depend only on the 

distance from the force center. It is then convenient to use spherical 

polar coordinates ( ), , .r θ φ   

In these coordinates, the Laplacian operator is  
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and the time independent Schrödinger equation is  

 ( )
2 2

2

2 2 2 2 2

1 1 1
sin .

2 sin sin
r V r E

m r r r r r

ψ ψ ψ
θ ψ ψ

θ θ θ θ φ

 ∂ ∂ ∂ ∂ ∂   
− + + + =    

∂ ∂ ∂ ∂ ∂    

ℏ
  (22.4) 

Making use of the angular momentum operator, the time-independent Schrödinger equation is 
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Since the angular momentum is a conserved quantity, the Hamiltonian operator and 
2L̂ commute and have 

a complete set of common eigenfunctions. Thus the angular dependence of the eigenfunctions of the 

Hamiltonian operator will be described by a spherical harmonic, ( ),m

lY θ φ  for which 
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The radial part of the eigenfunction will then be a solution of  
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which can be simplified, by changing to a new dependent variable ( ) ( ) ,u r rR r=  to 
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This is identical to the one dimensional Schrödinger equation, except that the potential is replaced by an 

effective potential 
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For 0,l ≠  the first term in the effective potential results in a centrifugal barrier which tends to push the 

particle away from the force center. 

The normalization condition is obtained from 
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The infinite spherical well 

Consider a particle confined inside a sphere of radius a, by a potential 
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The radial function is then a solution of 

 
( )2

2

2 2

1
,

l ld u
k u

dr r

+ 
= − 
 

  (22.12) 

where 
2 22 .k mE= ℏ  The boundary conditions are that u = 0 at r = a, and R is non-singular at 0.r =  

The solutions of equation (22.12) that satisfy these boundary conditions are 

 ( ) ,lu Arj kr=   (22.13) 

where jl is a spherical Bessel function of the first kind, and k satisfies ( ) 0.lj ka =  

The spherical Bessel functions of the first kind are given by 
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Hence 
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Useful recursion relations are 
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This gives 
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etc. 

The spherical Bessel functions of the first kind are shown below for l = 0, 1, and 2. 
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Because of their dependence on sin x and cos x, the spherical Bessel functions have multiple zeros. If nlβ  

is the nth zero of jl(x), the energy eigenvalues are 
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We see that the energy levels depend on two quantum numbers n and l. The eigenfunctions  
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depend on the magnetic quantum number m, and so the energy levels are degenerate. Since for given l, m 

can take the values –l, -l+1, …, l-1, l, we see that there are 2l+1 states with the same energy. 
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