$\mathbf{2}^{\text {nd }}$ Physics of Nuclei and Particles Exercises
Physics Course, 2° Semester

1. The Doppler broadening of a Breit-Wigner resonance cross section is the process where the resonance peak get larger as the temperature of the target increases. The zero-temperature radiative capture cross-section illustrated in Fig. 1 is the intrinsic cross-section to which the Breit-Wigner formula is immediately applicable. The excited state has spin 12, and there are two significant decay channels; the dominant one is γ-emission and the other is neutron emission. Estimate the relative probability of neutron radiative capture at resonance, and estimate the elastic neutron scattering cross-section at resonance.

Figure 1) The Doppler broadening of the Breit-Wigner cross-section σ_{γ} for neutron radiative capture by ${ }^{238} \mathrm{U}$. The resonance is at 6.67 eV and its natural width is 0.026 eV .
2. A nucleus ($j=0$) has a neutron resonance at 65 eV and no other resonances nearby. For this resonance, $\Gamma_{n}=4.2 \mathrm{eV}, \Gamma_{\mathrm{Y}}=1.3 \mathrm{eV}$ and $\Gamma_{\mathrm{a}}=2.7 \mathrm{eV}$, and all other partial widths are negligible. Find the cross-section for (n, γ) and (n, a) reactions at 70 eV .
3. Neutrons incident on a heavy nucleus with spin $j=0$ show a resonance at an incident energy $E R=250 \mathrm{eV}$ in the total cross-section with a peak magnitude of 1,300 barns, the observed width of the peak being $\Gamma=20 \mathrm{eV}$. Find the elastic partial width of the resonance.
4. a) A neutron with kinetic energy T_{0} (non-relativistic) collides elastically with a stationary nucleus of mass M. In the centre-of-mass system the scattering is isotropic. Show that on average the neutron energy after the collision is

$$
T_{1}=\frac{M^{2}+m_{\mathrm{n}}^{2}}{\left(M+m_{\mathrm{n}}\right)^{2}} T_{0}
$$

b) Consider the nuclei of a graphite moderator to be pure ${ }^{12} \mathrm{C}$, with a number density of 0.9×10^{29} nuclei $/ \mathrm{m}^{3}$. For neutron energies less than 2 MeV the scattering is elastic, with a cross-section approximately constant $\sim 4.5 \mathrm{~b}$.
Estimate (a) the number of collisions required to reduce the energy of a 2 MeV fission neutron to a thermal energy of 0.1 eV , and (b) the time it takes.

