

Institutes at Feb. LHCb week kick-off meeting – not complete

Towards a Mighty Tracker

Uli Uwer, Matt Needham, Chris Parkes

LHCb-INT-2019-007

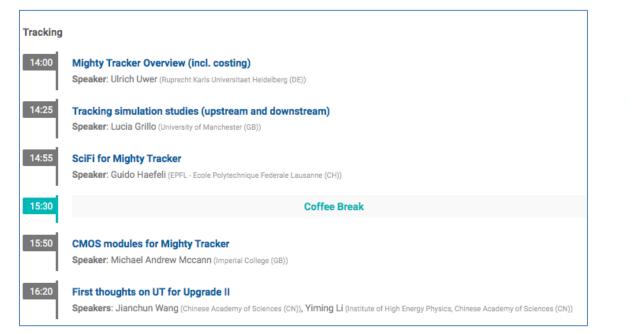
Mighty Tracker: Design studies for the downstream silicon tracker in Upgrade Ib and II

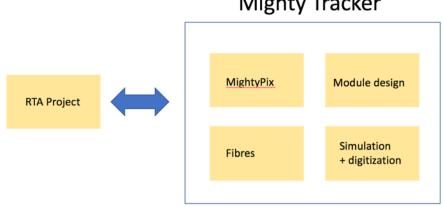
In preparation Preliminary Specification of a HV-CMOS Pixel Chip for LHCb Upgrade II

Slides based on Matt Needham's draft

ÉCOLE POLYTECHNIQUE Fédérale de lausanne

> THE UNIVERSITY of EDINBURGH


Science & Technology Facilities Council Rutherford Appleton Laboratory



The University of Manchester

Today

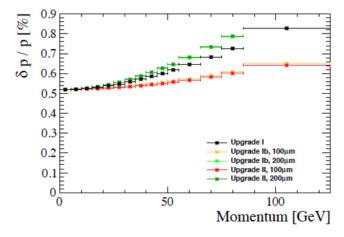
Mighty Tracker

- Middle-Inner Tracker, MIT, Mighty • © Fred Blanc
 - Combined project incorporating ۲ Scintilating Fibres & **CMOS Silicon**

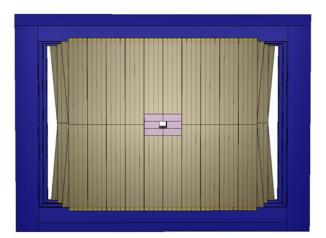
Potentially strong synergy on CMOS with UT, where studies are starting

Chris Parkes, March 2020

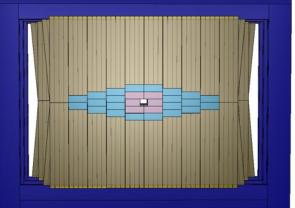
Tracking

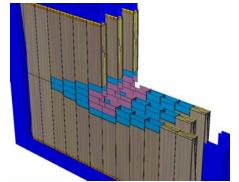

LG + Vadym Denysenko, Irene Cortinovis (Zurich), Zakariya Aliouche (Manchester), Thomas Ackernley (Liverpool) Yunlong Li, Alessandro Scarabotto, Laurent Dufour (CERN), MN,CP

• Design based on simplified simulation studies of tracking (Fibre geometry to give MCHits, smear to simulate pixel resolution)


- Join the dots studies to inform choice of pixel size
- Momentum resolution for high p tracks
- Track matching
- Forward like tracking (Vadym Denysenko)

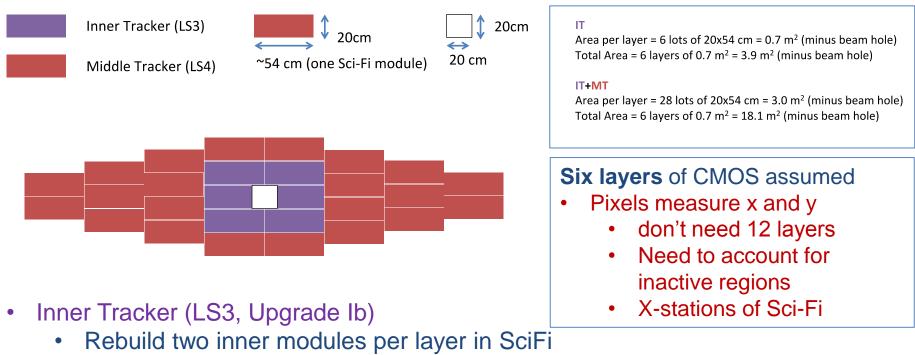
A lot to be done and a lot of room for contributions but already clear first impressions Inner tracker in Ib


- ghost rejection and momentum resolution at high p gains
- Finding tracks in mighty tracker simplified by small pixels
 - Good precision in y, which is non-bending plane
 - Promising studies of upstream/downstream matching (UT design critical also)
 - Do not anticipate need for timing



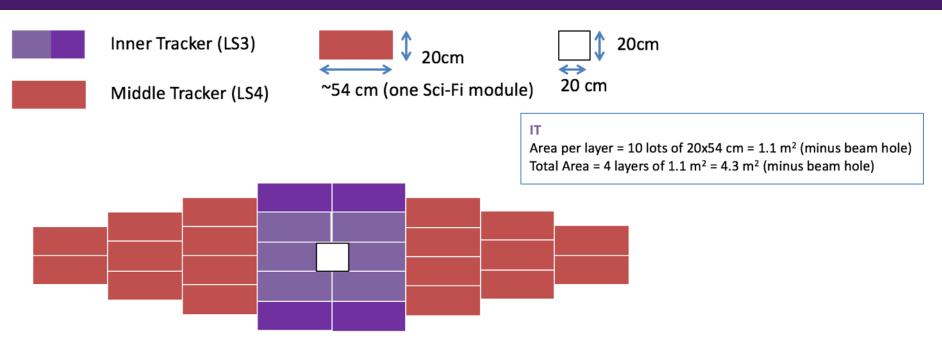
Simulation

- Full simulation studies underway
 - DD4HEP
 - will facilitate
 radiation/interaction rate
 studies
 - Tracking studies



Layout: current baseline

Vadym Dysenko, CP

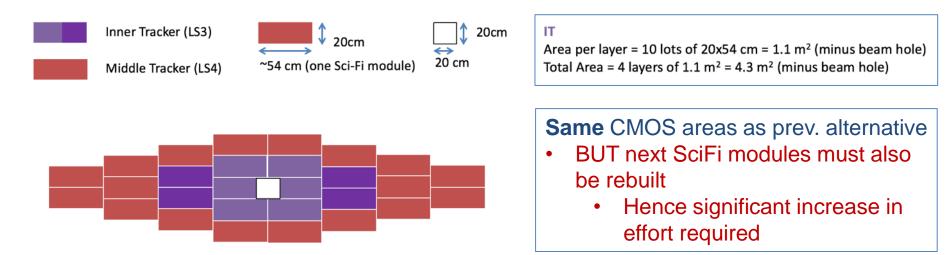


- CMOS Silicon ~ 4m²
- Outer Tracker (LS4, Upgrade II)
 - Entirely new Sci-Fi
 - CMOS Silicon ~ 18m², reusing 4m² of Upgrade Ib
 - Smaller Si would rely on improvements in SciFi rad. hardness

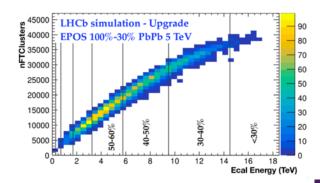
Size drivers:

- Inner Tracker Upgrade 1b: ghost rate + minimal modification to SciFi
 - Approx. 50% tracks pass through IT
- Middle Tracker Upgrade II: Radiation damage and occupancies in SciFi at Upgrade I level

Layout Alternative – Limiting rework

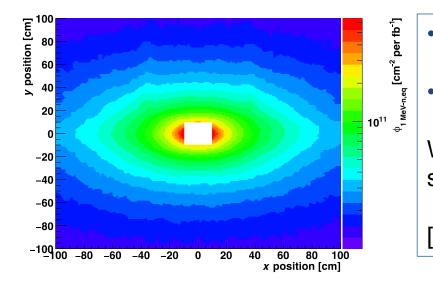


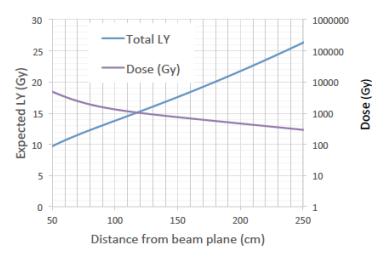
- Build Upgrade Ib Silicon at correct dimensions for inner Sci-Fi modules
 - May reduce CMOS rework later, SciFi will need rebuilding for U2 anyway
 - May reduce number of SciFi modules to be rebuilt in UIb ?
 - Build four layers not six of CMOS, UIb area fairly similar


Uli Uwer

Layout: Alternative – Heavy lons

Benjamin Audurier LHCb-INT-2020-004

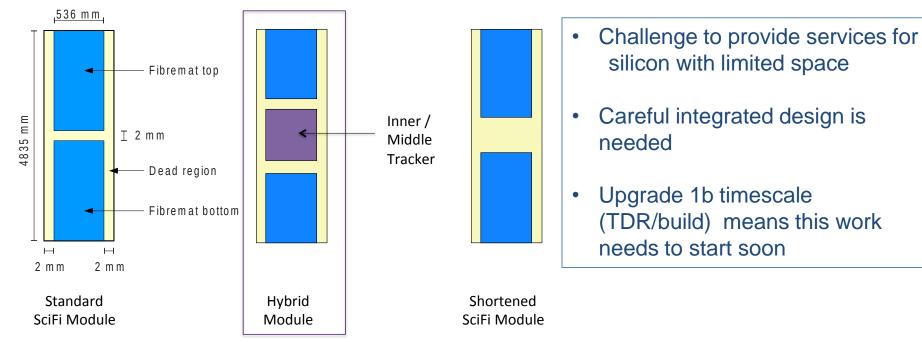



- SciFi is limiting factor at Upgrade I in track multiplicity coverage
- IT will assist significantly
 - Extending IT in UIb would allow centrality 0 to be reached.

detector configuration	Upgrade Ib	Upgrade II
SciFi only	3.2 ± 0.2	18.4 ± 0.4
SciFi with IT	$1.4 \pm 0.1 \; (\times 1/2.3)$	$6.8 \pm 0.3 \; (imes 1/2.7)$
SciFi with extended-X IT	$0.8\pm 0.1 \; (imes 1/4)$	$4.2 \pm 0.2 \; (\times 1/4.4)$

Radiation dose

- IT, Run 4-6 377 fb⁻¹, 3x10¹⁴ 1 MeV neq/cm²
- MT, Run 5-6 350 fb⁻¹, 2x10¹³ 1 MeV neq/cm²


Well within demonstrated capabilities of suggested HV-CMOS sensor technology

[UT is one order of magnitude higher]

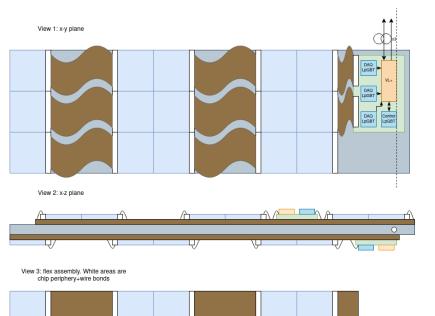
- SciFi radiation dose in U2 for fibres kept at level of Upgrade I by design
 - BUT neutron dose on SiPMs major challenge
 - Improvements in fibre rad. tolerance might allow silicon area to be reduced ?

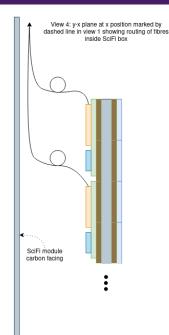
Hybrid module design

- Hybrid modules
- Shortened SciFi Modules
 - Improve tracking in SciFi region (lower occupancy)
 - Minimize material
 - Small overlap with hybrid modules

CMOS Module layout

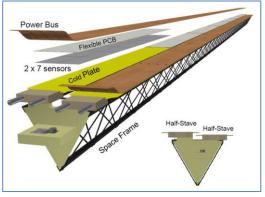
Alex Bitadze, Donal Murray (Manchester) Tim Jones (Liverpool) and others...

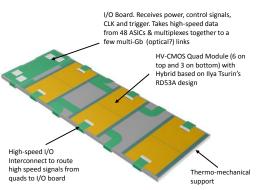

Example module concept


- Si / CF sandwich
 - Embedded pipes
- Si both sides
 - dead-area free module
- Readout runs along module
 - Transition to optical on stave

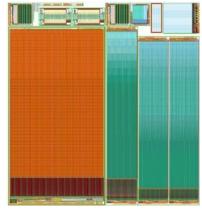
 Mechanical, Thermal, Services
 Integration with SciFi
 Critical

- Services fit in z-space critical
- Cooling options


Include air cooling, heatpipes



- ALICE ITS closest existing system
- ALICE, ATLAS inspiration



HV-CMOS MAPS

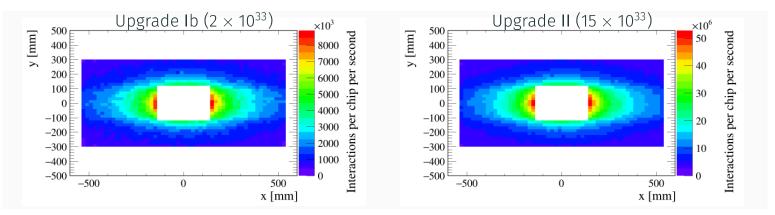
Ivan Peric (KIT), Andre Schoening (Heidelberg) Eva Villela (Liverpool) and others...

- N-well E field Particle
- Monolithic Active Pixel Sensor (MAPS)
- Integrated pixel sensor & chip on **single** piece of silicon
 - Low-cost commercial process
 - e.g. used for mobile phone cameras
- First radiation hard CMOS tracker at LHC
- Chip based on existing MuPix/ATLASPix
- <u>https://arxiv.org/abs/2002.07253</u>
 - "MightyPix" Specification document in preparation

Parameter	Depleted CMOS Sensors for LHCb	
Chip Size	$\sim 2\mathrm{cm} \times 2\mathrm{cm}$	
Sensor Thickness (μm)	200 (ATLASPix3)	
Pixel Size (µm)	100×300 (with smaller sizes to be explored)	
Time Resolution (ns)	Must be within 25 ns window	
Inactive area	< 5%	
Power Consumption (W/cm^2)	0.15	
Data transmission (Gbps)	4 links of 1.28 Gb/s each, multiplexed to 2 and 1 links	
NIEL (TBC)	3×10^{14} (6 × 10 ¹⁴ with safety factor)	

HV-CMOS Chip Timeline (pre- covid-19)

Period	Tasks	
Q1 2020	Specifications document	
	Design work for MPW1 to prototype matrices with a few pixel sizes	
Q2 2020	Submission of MPW1	
Q3 2020	Reception and evaluation of $MPW1$	
	Design work for MPW2 to prototype a matrix with one pixel size	
	and LHCb compatible readout electronics	
Q1 2021	Submission of MPW2	
Q2 2021	Reception and evaluation of $MPW2$	
	Design work for ENG1 to demonstrate a full reticle size detector	
Q1 2022	Submission of ENG1	
Q2 2022	Reception and evaluation of ENG1	
	Design work for ENG2 (production chip)	
Q3 2022	Evaluation of detector module based on ENG1	
Q1 2023	Submission of ENG2	
Q2 2023	Evaluation in full detector system of ENG2	
Q4 2023	Production readiness based on ENG2	

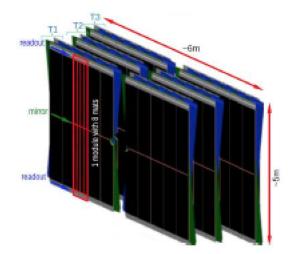

- Initial submission to explore alternative pixel sizes
- Time-walk is likely most challenging specification
- Compatibility with LHCb readout scheme in specification (thanks to Ken Wylie)
- Multiple sites setting up / planning to undertake chip testing

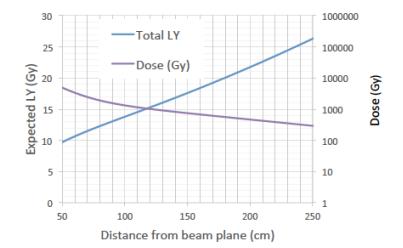
Electronics: CMOS Data rates

Important input to RTA and to project costing. First numbers on rates/link requirements

>25 bits will be required per hit, one hit per interaction

- 9 bits are needed to timestamp the pixel (same as in VELOPix)
- 13 bits (2¹³ = 8192) are needed to encode the pixel address
- Parity bits will be required for error detection, here 4 bits are assumed.


- UIb conditions: 70 Gb/s per layer
- Ull conditions: 415 Gb/s per layer


Preliminary – bits/hit underestimated, may wish to go closer than SciFi to beam Number of LpGBTx, pcie40 also estimated

SciFi Region

- Major challenge is radiation damage to fibres & SiPMs
 - Fibres: Ionising dose leads to loss of transparency
 - Current design assuming current fibres
 - NOL fibres potentially faster and higher light yield
 - SiPMs: neutron fluence leads to increased dark count rate
 - Controls: cryogenic cooling,

additional shielding, shaper time-constant

Summary

- Integrated SciFi and CMOS technologies in single project
- Initial stage Upgrade Ib
 - 2 SciFi modules/layer, 4m² CMOS
- Full Upgrade II modification
 New SciFi and 18m² CMOS
- First rad. hard large scale CMOS tracker in HEP
- Neutron fluence major challenge for SciFi SiPMs
- Interested ?
 - Email list: <u>LHCb-mighty-tracker@cern.ch</u>
 - Meetings: Wednesday at 10:00 CET, bi-weekly
 - Wiki:<u>https://twiki.cern.ch/twiki/bin/viewauth/LHCb/U2Tracking</u>

Backup