Modules for the Mighty Tracker

Michael M^cCann (on behalf of the mighty tracker group)

Imperial College London

30 March 2020

Overview

Replace central region of tracker with silicon

- Integrated with SciFi panels
- Central region built from nominally identical modules
- Exact dimensions to be optimised, constrained by SciFi in x and z
 Initial dimensions: 535 mm × 200 mm × 40 mm

Module design influences

Constraints on module from several directions

- Sensor
 - Must support the sensor
 - Allow it to operated as designed
- Integration
 - Must be compatible with the SciFi
- Physics
 - Low scattering required
- Complex optimisation problem

Sensor constraints

- Size: 20 mm×20 mm
 - Module must contain integer number or sensors
- Dead area: All on one edge, O(5%)
 Module must compensate for this with sensor arrangement
- \blacksquare Power consumption: \sim 0.1 W/cm^2
- Operating temperature: Room temperature
 - Module must cool sensor

Replace fibres with silicon sensors

- Replace fibres with silicon sensors
- Must be supported
 - Hold the sensors
 - Compensate for removed honeycomb

- Replace fibres with silicon sensors
- Must be supported
 - Hold the sensors
 - Compensate for removed honeycomb
- Needs power, cooling, readout

First look at a module

- Needs to compensate for sensor dead area
 - Overlap between adjacent sensors
- Allow cooling and services
- Must provide support inside SciFi
- Must be low material
- Can take inspiration from two similar projects
 - ALICE inner tracker
 - ATLAS ITk

Inspiration – ALICE inner tracker

Several meetings with the ALICE team take place

Inspiration – ATLAS ITk test module

- Similar geometry
- Similar sensor
- $\blacksquare \sim 1/8$ the size of a module
- Mature estimates of power/cooling to extrapolate
- Tight bends in kapton cable

MT initial concept

- Modification to ATLAS design
 - Can borrow cooling strategy
 - No bending of kapton cable

Cooling requirements not scary, but difficulty is providing cooling within acceptance

- 200 W per module
- \blacksquare Operate just above cavern dew point \sim 15 $^{\circ}\text{C}$
- Initial concept water cooled
 - \blacksquare Extrapolation from ATLAS prototype \sim 3 l/min
- Other options under investigation
 - Parasitic with SciFi cooling
 - Air cooling

Integration

Three potential integration schemes under investigation

Full (Nominal)

- All sensors and support structure contained within the SciFi modules
- Partial (backup 1)
 - Sensors and support structure mostly contained within the SciFi modules, but some space outside used
- Independent (backup 2)
 - Essentially everything outside the SciFi modules, but mounted to them

Initial integration designs

- Light carbon fibre structure to support sensor/cooling structure
- Supported between SciFi carbon fibre skins

Some questions still need to be answered before design moves forward

Integration – open questions

Acceptable dead area between SciFi and CMOS?

- Can the U-V fibre layers cover this region sufficiently?
 - If not, will need an overlap between the fibres and silicon in X layers

How to deal with the beam pipe

- Do we need multiple module types?
- Can panels be rotations of each other?

How early in the SciFi assembly does the integration need to happen?

Could we extend outside a SciFi panel if needed?

Probably not needed

Two potential service paths investigation

- Integrated (Nominal)
 - Runs within the SciFi modules
- Outside (backup)
 - Runs on outer surface of SciFi modules

Two potential service paths investigation

- Integrated (Nominal)
 - Runs within the SciFi modules
- Outside (backup)
 - Runs on outer surface of SciFi modules

How much cooling is required?

Studies of the ATLAS module suggest water is plausible

How many fibres

 \blacksquare Current DAQ estimates suggest \sim 200 fibres per module

How many copper services

Can make reasonable assumptions from the ATLAS modules

What does it mean to extend beyond the SciFi modules?

- \sim 30 mm between layers
 - Would prefer not to reduce inter-layer space
- As only using X layers could
 Use -ve z at front of station
 - Use +ve z for back of station
- Would still need to be careful of pillars and RICH 2

Simulation

DD4HEP geometry implemented

Support material being included

 Soon can be used to optimise module design

- Plausible initial concepts for module
- Several options for integrating with the SciFi being investigated
- Needed services being investigated
- Simulation advancing well
- In good state to advance module design

