



### **Towards a Muon Phase II Detector**

W. Baldini on behalf of the Muon group

5<sup>th</sup> Workshop on LHCb Upgrade II, Mar 30<sup>th</sup> – Apr. 1<sup>st</sup>

## **Overview**

- Present and future Muon Detector
- Iron wall shielding project and expected rates
- u-RWELL for R1and R2 regions
- Options for R3 and R4 Regions
  - MWPCs
  - RPCs
  - Scintillating-Tiles
- Conclusions & Final remarks

Discussion on Readout Electronics in the next Talk (Giulietto)



#### **Muon Upgrade II Note**

The ongoing discussion on the Muon Upgrade II Detector has been summarized in the internal note LHCb-INT-2020-007:

https://cds.cern.ch/record/2714057/files/LHCb-INT-2020-007.pdf

Warm thanks to all the people who contributed to the note and to this presentation!



#### Considerations on Muon detector upgrade II

F.P. Albicocco<sup>1</sup>, W. Baldini<sup>2</sup>, G. Bencivenni<sup>1</sup>, B. Bochin<sup>3</sup>, N. Bondar<sup>3</sup>, D. Brundu<sup>4</sup>, S. Cadeddu<sup>4</sup>, A. Cardini<sup>4</sup>, M. Carletti<sup>1</sup>, L. Casu<sup>4</sup>, A. Chubykin<sup>3</sup>, P. Ciambrone<sup>1</sup>,
L. Congedo<sup>5,6</sup>, M. De Serio<sup>5,6</sup>, P. De Simone<sup>1</sup>, G. Felici<sup>1</sup>, M. Gatta<sup>1</sup>, M. Giovannetti<sup>1</sup>,
G. Graziani<sup>12</sup>, P. Griffith<sup>2</sup>, D. Ilin<sup>3</sup>, M. Korolev<sup>11</sup>, S. Kotriakhova<sup>3,7</sup>, O. Maev<sup>3,8</sup>,
G. Martellotti<sup>7</sup>, G. Morello<sup>1</sup>, M. Palutan<sup>1</sup>, G. Passaleva<sup>8,12</sup>, A. Pastore<sup>5,6</sup>, M. Poli Lener<sup>1</sup>,
D. Pinci<sup>7</sup>, R. Santacesaria<sup>7</sup>, M. Santimaria<sup>1</sup>, A. Saputi<sup>1,8</sup>, E. Santovetti<sup>13</sup>, A. Sarti<sup>7,9</sup>,
C. Satriano<sup>7,10</sup>, A. Satta<sup>13</sup>, B. Schmidt<sup>8</sup>, T. Schneider<sup>8</sup>, B. Sciascia<sup>1</sup>, S. Simone<sup>5,6</sup>,
A. Vorobyev<sup>3</sup>

 <sup>1</sup> INFN, Laboratori Nazionali di Frascati, Italy.
 <sup>2</sup> INFN, Sezione di Ferrara, Italy.
 <sup>3</sup> Petersburg Nuclear Physics Institute, NRC, Kurchatov Institute (PNPI, NRC, KI), Gatchina, Russia <sup>4</sup> INFN, Sezione di Cagliari, Italy.
 <sup>5</sup> INFN, Sezione di Bari, Italy.
 <sup>6</sup> Università di Bari, Italy.
 <sup>7</sup> INFN, Sezione di Roma La Sapienza, Italy.
 <sup>8</sup> European Organisation for Nuclear Research (CERN), Geneva, Switzerland.
 <sup>9</sup> Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Università "La Sapienza" di Roma, Italy.
 <sup>10</sup> Università della Basilicata, Potenza, Italy.
 <sup>11</sup> Institute of Nuclear Physics, Moscow State University (SINP MSU), Leninskie Gory, Moscow 119991, Russia
 <sup>12</sup> INFN, Sezione di Firenze, Italy.
 <sup>13</sup> INFN, Sezione di Roma Tor Vergata, Italy.

#### Abstract

In this document we present a preliminary discussion about the muon upgrade II, which includes options on detector technology, electronics and readout, and very first cost estimates.

#### The MU2 Detector: a Challenge for the Future

**LHCD**  $\mu^{+}$  this is fixed to be discussed **THCP**  $n^{-}$  With almost 400 m<sup>2</sup> of sensitive area and ~1650 m<sup>2</sup> of chambers the LHCb Muon Detector is one of the largest and most irradiated detectors in the world

The newborn LHC-B collaboration in 1995 faced a formidable task: to design a very large detector for muon triggering and identification with

- good p<sub>T</sub> resolution *abandoned at Run 3*
- key ingredient for success in Run1/2
- high efficiency (>95%) in a 25 ns window, requiring better than 99% in a single station
- flux changing almost by 4 orders of magnitude across the sensitive area

flux at Run 5= Run3 x10 !

#### At **LOW** cost!

even more important now...

Prehistory: 1995 – 1996 LOI



Six (!) Muon Stations Full Wire Chamber technology Projective geometry, pad readout

#### Slide from G. Carboni (LHCb week Dec. 2018)

#### **Rates extrapolated at 2x10<sup>34</sup>**

From the upgrade 1 PID TDR estimates, and taking into account the measured fractions of correlated/ uncorrelated hits, it is possible to extract the single-gap rate expected on MWPCs, which is assumed as the starting point for the expected rate on a generic detector

| max values    |                              | kHz/cm <sup>2</sup>   | Iz/cm <sup>2</sup> kHz/cm <sup>2</sup> kHz/ |                     | kHz/cm <sup>2</sup>          | ł                   | kHz/cm <sup>2</sup>          |                     |
|---------------|------------------------------|-----------------------|---------------------------------------------|---------------------|------------------------------|---------------------|------------------------------|---------------------|
| single<br>gap | M2R1<br>M2R2<br>M2R3<br>M2R4 | 998<br>98<br>13<br>10 | M3R1<br>M3R2<br>M3R3<br>M3R4                | 575<br>72<br>8<br>3 | M4R1<br>M4R2<br>M4R3<br>M4R4 | 211<br>30<br>5<br>2 | M5R1<br>M5R2<br>M5R3<br>M5R4 | 179<br>20<br>4<br>2 |

• average ~1/2 of max values

 nominal phase 2 lumi is 1.5x10<sup>34</sup>, we're considering here 2x10<sup>34</sup> as additional margin, also in view of the large uncertainties related to this extrapol.

In the above numbers, we're considering to replace HCAL (1.7 m thick) with a mixture of Iron and concrete;

from simulation results (<u>LHCb-INT-2019-008</u>) a possible design consists of an Iron core 1.7m covering regions R1-R3 and a mixed structure covering R4, composed by concrete top/bottom and Iron/concrete sandwich on the middle plane. M2R1\_x0.58

Estimated rate reduction factors on M2 are:

M2R2 x0.31 M2R3 x0.36



Studies to be refined, useful suggestions from a recent U2PG review

## Status of the shielding project

#### A.Cardini, M.Palutan, A.Saputi, A.Sarti

Preparatory drawings ready (A. Cardini, A. Saputi, <u>EDMS 2068799</u>), based on available iron slabs from the Opera magnet, with a reinforced HCAL support

The needed iron slabs from Opera (92 on a total of 336 available) will be stored in LNF

Following the U2PG suggestions (<u>LHCb-INT-2019-011</u>), we're now scoring the different contributions to the rate on the muon stations close to the beam pipe in order to possibly optimise the shielding composition

The same effort on simulation is also fundamental to analyse the different options for the detector technology

Volume for fluence scoring: Air volume around beam pipe upstream of the second Muon chamber (M2).



#### Scenario's for an upgraded detector

1) R1 and R2 all stations, rates  $\sim$  few MHz: 144 chambers, 23 m<sup>2</sup>

intense R&D  $\rightarrow \mu$ -RWELL MPGD detector of new generation onaoina 2) R3+R4 all stations, rates  $\sim$ 10 kHz: 960 chambers, 364 m<sup>2</sup> more than 20 explore the possibility to reuse large fraction of vears of → MWPC the present chambers: ageing studies required, experience in need new FEE electronics our aroup **RPC** developed for ATLAS BI project (and further → RPC developments) may be a viable option for a fraction of the discussion just interested area started in the muon aroup. but solid experience outside compact and relatively easy to build (synergy with other → Scintillating tiles LHCb subdetectors?)

(Separation btw inner/outer regions not sharp: some of the proposed solutions may have a broader range of applicability, decision will depend on performance vs cost)

# The μ-RWELL technology for High Rate Regions

G. Bencivenni, P. Ciambrone, G. Felici, , M.Poli Lener, G. Morello





# The µ-RWELL architecture



The  $\mu$ -RWELL is composed of only two elements: the  $\mu$ -RWELL\_PCB and the cathode defining the gas gap.

The  $\mu$ -RWELL\_PCB, the core of the detector, is realized by coupling:

- 1. a WELL patterned Apical® foil acting as amplification stage
- 2. a resistive layer for discharge suppression w/surface resistivity ~  $10 \div 100 M\Omega/\Box$  different current evacuation schemes can be implemented
  - i. LR << 1 MHz/cm<sup>2</sup> SHiP, STCF, EIC, HIEPA
  - ii. HR >>1 MHz/cm<sup>2</sup> LHCb-Muon phase 2upgrade & future colliders - CepC, Fccee/hh
- 3. a standard readout PCB





The  $\mu$ -RWELL amplification stage

# HR layouts: the Silver grid





The SG is a simplified HR scheme based on a Single Resistive layer with a 2-D grounding by means a conductive strip lines grid realized on the DLC layer.

The **conductive grid lines** can be screen-printed or **etched** by photo-lithography (*using the DLC+Cu deposition technology developed at USTC – Hefei*).

The conductive grid can induce instabilities due to discharges over the DLC surface, thus requiring for the introduction of a small dead zone on the amplification stage.



LHC





# 12

# Work plan for RWELL

1) Ongoing R&D on resistive layer (DLC): RD51 project (USTC - Hefei, Kobe Univ., CERN, LNF-INFN)

2) Performance and spark probability measured at PSI, first ageing tests done at various facilities, showing no performance degradation

| source | spot $(cm^2)$ | rate $(kHz/cm^2)$ | $q_{int} (mC/cm^2)$ | $t_{LHCb}$ (years) |
|--------|---------------|-------------------|---------------------|--------------------|
| GIF++  | 100           | 200               | 175                 | 1.1                |
| PSI    | 9             | 1E+4              | 125                 | 0.8                |
| X-ray  | 50            | 700               | 90                  | 0.6                |

3) Tests on stability of DLC ongoing

4) Ageing studies: a **long-term slice test in LHCb** would be extremely important to assess the detector behaviour in a realistic environment. One/two gaps could be installed on the M2 wall to monitor the currents under heavy irradiation.

5) This year production of first prototypes for high rate with dimensions  $\sim$  M2R1/R2, integration test with the VFAT3 FEE chip

Matching with the readout electronics of paramount importance  $\rightarrow$  see Giulietto's Talk



# MWPCs For R3 and R4 Regions

O. Maev, N. Bondar

### **Considerations about MWPC aging**

Estimated average deposited charge (C/cm of wire) after 50/fb, in the most irradiated chamber of each station/region.

|    | <b>R</b> 1 | $\mathbf{R2}$ | R3   | R4    | -<br>- |
|----|------------|---------------|------|-------|--------|
| M2 | 0.67       | 0.42          | 0.10 | 0.02  |        |
| M3 | 0.17       | 0.08          | 0.02 | 0.01  | Ė      |
| M4 | 0.22       | 0.06          | 0.01 | 0.004 | L<br>L |
| M5 | 0.15       | 0.03          | 0.01 | 0.003 | 14     |
|    |            |               |      |       | -      |

The most irradiated chambers in M1R2 already reached 0.7 C/cm, w/o visible effect; in addition, the fraction of gaps affected by Malter is stable at the moment [JINST 14, P11031]

If we consider regions in the red squares (~95% of the area) 0.7 C/cm will be reached only in M2R3 after 400 fb<sup>-1</sup> all other regions will be well below  $\rightarrow$  This gives the opportunity to propose a massive reuse of the present MWPCs and of the existing detector infrastructure

A direct inspection of a couple of M1R2 chambers will be fundamental to check for possible ageing effects (on wires or cathodes)  $\rightarrow$  preparation (was) ongoing in Lab 3, (in collabortation with T. Schneider and B. Schmidt)

Given the above, targeting 500/fb seems possible for R3 and R4 of all stations, provided the projections above are confirmed by the first years of operation in Run 3

### M2 @ Upgrade Conditions

A critical point is the maximum rate to the R/O, this can be reduced:

→ Single PAD readout, instead of present large area X-Y strips

→ Separate the 4 GAPs where is possible (everywhere apart R4 regions in M2-M4): we expect a ~ **30-40% reduction** of background hits (now OR-ed in bi-gaps)

→Logical combination of the gaps rejecting combinations with one hit only: could reduce the rate ~ factor 3

Maximum expected rates at RUN5 conditions extrapolated from RUN2 measurements:

- considering the effect of additional shielding
- background hits suppression from above R/O scheme
- reduced pad dimensions where rate >1MHz per R/O channel

#### Same exercise done for all stations



Maximum expected rates per R/O channel in M2 station

### **Summary on MWPC**

Reuse present MWPCs where possible and produce new MWPCs only where needed

This plan would reduces significantly the resources needed for new detectors

In a maximal configuration a total of **128 NEW MWPCs** should be built, and **880 re-used** 

- feasibility study of the new FEE
- a irradiation campaign at GIF++ (or other facilities) must be carried out

| sta/reg | # cha | # cha | # FEE ch |
|---------|-------|-------|----------|
|         | reuse | new   |          |
| M2R3    | 24    | 24    | 58368    |
| M2R4    | 152   | 40    | 6144     |
| M3R3    | 48    | 0     | 24576    |
| M3R4    | 176   | 16    | 8448     |
| M4R2    | 0     | 24    | 18432    |
| M4R3    | 48    | 0     | 9216     |
| M4R4    | 192   | 0     | 9216     |
| M5R2    | 0     | 24    | 18432    |
| M5R3    | 48    | 0     | 9216     |
| M5R4    | 192   | 0     | 18432    |
| Total   | 880   | 128   | 180480   |
|         |       |       |          |



# **RPC For R4 Regions**





#### M. De Serio, S. Simone

ds.cern.ch/rec<mark>ord/2285580</mark>/files/ATLAS-TDR-026.pdf

#### **RPCs: status of the art**

Thanks to low cost per unit area, high space and time resolution as well as ease of construction, RPCs have been widely used in many HEP experiments.

Current developments, aimed at increasing the rate capability as well as improving the time resolution, make them still an interesting option to be investigated for future projects where large sensitive areas exposed to *high* particle rates are required.

 $\langle V_{\rm gas} \rangle = V - 2\rho d \langle Q \rangle \Phi_{\rm eff}$ 

Voltage drop: to be minimized in order to reduce efficiency loss with increasing flux

- Reduce electrode resistivity
  - Reduce electrode thickness
  - Reduce average charge per event

#### **RPCs: status of the art**

#### New Generation RPCs for the BIS78 Upgrade



A time resolution of ~ 0.4 ns or better (using 3 gaps) would be very useful to reject combinatorial background

#### **Main developments**

- Finalize studies on eco-friendly gas mixtures (e.g. HFO-based)
- Test new-generation (*thin*) RPCs with standard / eco-friendly gas mixtures at GIF++ to assess high rate capability and study ageing effects

• Development of low-noise high-amplification front-end electronics



# **Scintillating Tiles for R4 Regions**



# The Idea

- Scintillating tiles read out through WLS/Clear fibers and SiPMs
- each scintillator tile can be 1-2 cm thick, in order to have a high light yield → high detection efficiency
- scintillator+fiber+SiPM yield is usually 40-50
   p.e./cm → high thresholds → lower Dark
   Count Rate (DCR)
- Scint. light collected by short WLS fibers (~25cm) and guided to SiPMs via clear fibers



Surface grooves or embedded holes in extruded scintillators



spettro carica H12 - [DC offset: 150 mV]

 Critical point is the SiPMs damage with radiation, especially Neutrons

# The Idea

- The scintillator can be put on the front of the support wall
- SiPMs and FE electronics can be located on the back
- Location of SiPMs should be chosen where the integrated neutron flux is lower, but keeping fibers as short as possible to maximize light transmission
- In this way we could keep SiPMs 4π shielded from radiation (polyethylene + boron for neutrons) and cooled



#### **Detection Options: Single tile and TDC Readout**

Assuming tiles 10 x 25cm<sup>2</sup> in M2

- $\rightarrow$  ~40 tiles/m<sup>2</sup> in M2
- → All R4 regions ~ 290 m<sup>2</sup>
- → ~9200 tiles in total (M2-M5 only R4)



#### Conclusions

# Ongoing discussions for a possible Muon Phase II Detector have been reported

- Additional iron/concrete shielding in place of HCAL is being evaluated, the possible benefit of keeping HCAL at Run 4 needs to be investigated by the collaboration before giving green light.
- To better define detector parameters (granularity, rate capability, time resolution) more detailed simulations are needed
- Strong expertise in the present Muon group for all the proposed technologies: μ-RWell, MWPCs, RPCs, Scintillating Tiles
- Clearly, additional studies are needed: aging, rate capability, time resolution

#### **Final Remarks**

• At present we're open to all possible solutions, the choice will be driven by physics performance, cost and also by person-power availability.

An ambitious project like building a new MUON detector from scratch can only be afforded if new groups/communities join the effort!



## Being conservative pays!



## *We worked at* 4*x*10<sup>32</sup> *starting from 2011, a factor of 2 above the design value, with efficiency >99% in every station/region!*

Several ingredients for the success: excellent design and construction quality, 4 gaps (redundancy), excellent maintenance and operation, HV training, time response stability [JINST 14, P11031]

### **Expected Rates at RUN5**

R4

|    | R4     |        | R3     |        |   |    |
|----|--------|--------|--------|--------|---|----|
| 16 | 357554 | 265666 | 281013 |        | • |    |
| 15 | 430567 | 230063 | 265158 |        | 3 |    |
| 14 | 318171 | 177132 | 175583 |        |   |    |
| 13 | 353465 | 127393 | 117398 |        |   |    |
| 12 | 232073 | 288481 | 80279  | 284003 |   |    |
| 11 | 273781 | 207220 | 51624  | 136927 |   | м  |
| 10 | 194764 | 161683 | 35502  | 77161  |   | 16 |
| 9  | 219198 | 114371 | 23534  | 42858  |   |    |
| 8  | 150992 | 93827  | 212336 | 275905 |   |    |
| 7  | 169612 | 71307  | 136671 | 171158 |   |    |
| 6  | 107440 | 58672  | 113454 | 121013 |   | N  |
| 5  | 126139 | 44490  | 77361  | 78757  |   |    |
| 4  | 83425  | 39005  | 65274  | 58841  |   |    |
| 3  | 98893  | 30707  | 46105  | 45427  |   |    |
| 2  | 63149  | 27286  | 41438  | 40949  |   |    |
| 1  | 70849  | 26100  | 34138  | 35185  |   |    |
|    | D      | C      | B      | Α      |   |    |

| C     | В     | A      |        |        |   |   |
|-------|-------|--------|--------|--------|---|---|
| R4    |       | R3     | R2     |        |   |   |
| 16750 | 18099 | 200366 | 108537 | Μ      | 5 |   |
| 13306 | 7782  | 196464 | 79754  |        |   |   |
| 16052 | 12336 | 115349 | 51545  | 136406 |   |   |
| 11705 | 9345  | 88844  | 36441  | 56162  |   |   |
| 12333 | 7910  | 60135  | 22     | 1875   |   |   |
| 10244 | 7598  | 49713  | 12     | 5260   |   | _ |
| 4175  | 9976  | 57556  | 7.     | 2150   |   |   |
| 8934  | 15863 | 113152 | 10     | 0756   |   |   |
| 8905  | 21887 | 40590  | 4      | 2251   |   |   |
| 11346 | 33817 | 66685  | - 4    | 4623   |   | _ |
| 13265 | 26070 | 35788  | 2      | 3339   |   |   |
| 6162  | 19236 | 22832  | 1      | 7951   |   |   |
| 6675  | 17078 | 16018  | 1      | 2755   |   |   |
| 5247  | 11158 | 13286  | 1      | 3711   |   |   |
| 4923  | 6137  | 7353   |        | 5930   |   |   |
| 4015  | 4705  | 6610   |        | 5740   |   |   |

В

Α

16 15

10

D

С

| MWPC present R3,<br>16 to be produced |
|---------------------------------------|
| MWPC present R4                       |

to be produced

| R4 |   |       | R3 |        |      | R2        |        |                    |            |
|----|---|-------|----|--------|------|-----------|--------|--------------------|------------|
| 16 |   | 37688 | 1  | 148466 | 2716 | 17        | 151843 |                    | <b>VI4</b> |
| 15 |   | 58375 | 1  | 123521 | 2438 | 38        | 116641 |                    |            |
| 14 |   | 34320 |    | 91376  | 1314 | 67        | 75124  | 134816             |            |
| 13 |   | 51463 |    | 66927  | 1006 | 56        | 30245  | 62782              |            |
| 12 |   | 26770 |    | 45642  | 678  | 27        | 17     | 9719               |            |
| 11 |   | 44310 |    | 33642  | 453  | 42        | 13     | 5224               |            |
| 10 |   | 23639 |    | 25783  | 326  | 21        | 6      | 1790               |            |
| 9  |   | 37509 |    | 19241  | 178  | 20        | 34     | 4926               |            |
| 8  |   | 20183 |    | 16087  | 369  | <b>68</b> | 4      | 2328               |            |
| 7  |   | 31345 |    | 12229  | 226  | 14        | 2      | 6254               |            |
| 6  |   | 17578 |    | 10158  | 197  | 22        | 1      | 8009               |            |
| 5  |   | 26082 |    | 7679   | 126  | 56        | 1      | 1656               |            |
| 4  |   | 15483 |    | 6443   | 111  | 00        | 1      | 9135               |            |
| 3  |   | 20998 |    | 5246   | 73   | 78        |        | 6 <mark>684</mark> |            |
| 2  |   | 11836 |    | 4707   | 70   | 31        | 1      | 5744               |            |
| 1  |   | 16428 |    | 3827   | 51   | 34        |        | 4722               |            |
|    | D |       | С  |        | B    |           | Α      |                    |            |

R3

MWPC same size R2 but x4 granularity, 24 to be produced

MWPC present R3, 0 to be produced

MWPC present R4 0 to be produced

| MWPC same size R2   |
|---------------------|
| but x4 granularity, |
| 24 to be produced   |

MWPC present R3, 0 to be produced

**MWPC present R4** 0 to be produced

## The BI RPC project for the ATLAS muon phase 2

A major re-design of the RPC technology started around the year 2010, mainly aiming at a better rate capability and ageing behaviour. The new design is based on a reduced thickness of the gas gaps (from 2 mm to 1 mm) and of the resistive electrodes (from 1.8 mm to 1 mm), and on the use of a new generation of low-noise high-sensitivity amplifiers. Using these amplifiers, full efficiency can be achieved for a lower voltage across the gas gap, thus transferring part of the amplification from the gas avalanche to the electronics. In this way, the RPCs can be operated at a reduced charge per avalanche, reducing the detector current and thus improving rate capability and ageing.



https://cds.cern.ch/record/ 2285580/files/ATLAS-TDR-026.pdf



The BI RPC system covers an area of 470 m<sup>2</sup>, corresponding to a total active surface of 1410 m<sup>2</sup> (1/5 of the present RPC system). It comprises 272 triplet RPC chambers, equipped with 13500 FEBs.

### The BI RPC project for the ATLAS muon phase 2



#### 1 mm thick gas gaps

Thinner gas gap  $(2 \text{ mm} \rightarrow 1 \text{ mm})$ Thinner electrodes  $(1.8 \text{ mm} \rightarrow 1.2 \text{ mm})$ 

- Lower detector weight
- Thinner supports allowed
- More efficient signal collection
- Improved charge distribution
- Double time resolution (0.4 ns)
- Full efficiency reached at an HV of 5.4 kV, as tested at CERN GIF++ using a muon beam and a <sup>137</sup>Cs photon source with different absorption factors [1].

#### Bibliography

TDR: CERN-LHCC-2017-017 / ATLAS-TDR-026 [1] https://indico.cern.ch/event/644205/contributions/2862274 [2] https://indico.cern.ch/event/644205/contributions/2862251 [3] https://indico.cern.ch/event/644205/contributions/2862314

#### New RPCs for Phase-II Upgrade

#### Front-End Electronics in SiGe BiCMOS technology

There will be a low-cost, high-performance and low-power Front-End board, allowing higher rate capability, more radiation hardness and better space-time resolution with respect to the performances of the present RPCs.

The new ASIC will have function of amplifier, discriminator, TDC and serializer, improving the time resolution and allowing Time-Over-Threshold measurements.

- The new preamplifier and discriminator prototypes have been tested on 1 mm RPCs, reaching a time resolution of 0.35 ns measured with an high rate muon beam[2]
- The new TDC with serializer, with a time resolution of 100 ps, has been prototyped, measuring an intrinsic jitter of 10.77 ps [3]



Rate capability ~10 kHz/cm<sup>2</sup>, time resolution ~ 0.5 ns per gap

### **Front-end electronics**

G. De Robertis (INFN Bari)



![](_page_31_Figure_3.jpeg)

For CMS up to 10 FEBs interfaced with 1 GBT, not possible for LHCb

#### Expected Neutron Flux @ U2 Conditions (50 fb<sup>-1</sup>) M. Karachson

![](_page_32_Figure_1.jpeg)

#### **Neutrons Shielding**

- Poliethylene + 5% Boron as a neutron shielding, to absorb slow/thermal neutrons
- As a very rough number:
  - → ≈ factor 10 reduction of the fluence for a 5 cm layer
- neutrons generate lots of Υ
  - $\rightarrow$  few mm Pb shielding?

High Energy Neutrons have energy >100 MeV Fast Neutron have energy 10 KeV -100 MeV Epithermal Neutron are Neutrons with energy 10 KeV and 0.1 ev Thermal Neutron have energy <0.1 eV

![](_page_33_Figure_7.jpeg)