ECAL Overview on Upgrade II requirements with possible LS3 & LS4 configurations

5th LHCb Upgrade II Workshop 31.03.2020

The current LHCb ECAL

<u>Current ECAL</u> optimized for π^0 and γ identification in the few GeV to 100GeV energy range at L=2x10³² cm⁻²s⁻¹

- ➤ radiation resistant up to 40KGy
- > three sections (Inner, Middle, Outer) of cell size 4x4, 6x6, 12x12 cm²
 > σ(E)/E ~ 10%/√E ⊕ 1%

Energy resolution with electrons

✓ Large Shashlik array ~50 m² with 3312 modules and 6016 channels

 ✓ Modular wall-like structure of ~8x7m², two halves open laterally

Basic ECAL requirements for Upgrade II

Overall requirements:

- ✓ sustain **radiation doses** of up to ~1MGy and $\leq 6.10^{15}$ cm⁻² for 1MeV neq/cm² at 300 fb⁻¹
- ✓ include a very fast timing component of O(10) picoseconds for pile-up mitigation
- ✓ keep good energy resolution of order $\sigma(E)/E \sim 10\%/\sqrt{E \oplus 1\%}$
- ✓ handle increased occupancy by increasing granularity
- ✓ respect dimensional **constraints of a module**: 12 x 12 cm² outer dimension

31.03.2020

(1MGy = 100Mrad)

LHCERA HL-LHCE

After LS2 in 2021-2024:

> Run with unmodified ECAL shashlik modules at L= $2x10^{33}$ cm⁻²s⁻¹

LS3 in 2025/26:

- Replace modules around beampipe to improve performance at L=2(4)x10³³ cm⁻²s⁻¹ (minimal consolidation: ~32 rad. hard modules compliant with Upgrade II conditions)
 LS4 in ≥2031:
- Rebuild ECAL with new radiation tolerant modules and (refurbished) old modules compatible with occupancies for a luminosity of up to L=15x10³³ cm⁻²s⁻¹
- Include timing information to mitigate pile-up

Radiation requirements for Upgrade II

3 regions of ECAL

LHCD

31.03.2020

LHC

5th Upgrade II Workshop

Andreas Schopper6

ECAL requirements for Upgrade II

Radiation resistance requirements to modules:

- $\checkmark\,$ in "hot" inner region need of very rad. hard modules sustaining up to $\sim 1000 kGy$
- ✓ in "intermediate" inner region need of modules sustaining between ~50kGy to 200kGy
- ✓ big part of middle region and all of outer region compatible with current shashlik type modules resisting up to ~40kGy

From radiation point of view: (not taking into account cell size requirements due to occupancy)

- > need **32 new modules** for extreme conditions **up to** ~**1MGy**
- > need another 144 new modules with "moderate" radiation requirements up to ~200kGy
- ➤ can "reshuffle" inner-type modules (176 modules with 4x4cm² cells) to middle region
- ➤ can "re-shuffle" middle-type modules (448 modules with 6x6cm² cells) to outer region
- > out of a total of 3312 modules **2688 modules** are of outer-type with **12x12cm**² cells

From physics and reconstruction point of view:

- ✓ 5D ECAL requirements (**E**, **x**, **y**, **z**, **t**) to be determined from reconstruction and physics performance studies for:
 - \succ "hottest" and "intermediate" inner region to define E-resol., cell size, M_R, Z-segmentation, timing resol., ...
 - middle and outer region to optimize "re-shuffling strategy"
 - ▶ <u>note</u>: no need anymore of <u>square</u> regions (no L0) → better match to irradiation map

LS3 ECAL configuration options

Light red: new 1MGy modules Green: keep existing modules

<u>Current ECAL</u>: **6'064** cells (6016 ch.

readout)

LS3: 32 modules 1MGy region

➤ with 2.0 cm cells: 8'080 ch.

➤ with 1.5 cm cells: 9'872 ch.

 ✓ <u>note</u>: assuming dual R/O (twofold Z-segmentation)

S3 new 1MGy region 1.5 cm cell	s						
CAL regions		mod./region	#ch./region	#cells/mod.	size (cm)	Z-segments	# channels
MGy region		32	2048	64	(1.5) (2	4096
00 kGy region		144	1296	9	4.0	1	1296
niddle		448	1792	4	6.0	1	1792
uter		2688	2688	1	12.0	1	2688
	Totals	3312	7824				9872
S3 new 1MGy region 2cm cells							
CAL regions		mod./region	#ch./region	#cells/mod.	size (cm)	Z-segments	# channels
MGy region		32	1152	36	(2.0) (2	2304
00 kGy region		144	1296	9	4.0	I	1296
niddle		448	1792	4	6.0	1	1792
uter		2688	2688	1	12.0	1	2688
	Totals	3312	6928				8080
urrent ECAL							
CAL regions		mod./region	#ch./region	#cells/mod.	size (cm)	Z-segments	# channels
MGy region		32	288	9	4.0	1	288
00 kGy region		144	1296	9	4.0	1	1296
niddle		448	1792	4	6.0	1	1792
uter		2688	2688	1	12.0	1	2688
	Totals	3312	6064				6064

LS3 ECAL configuration options

Light red: new 1MGy modules Dark red: new 200kGy modules Green: reuse existing modules

- LS3: 32 modules in 1MGy region
- 1MGy region:1.5 cm cells
- 200kGy region: 4.0 cm cells (old)

> 9'872 channels

LS3: 32 modules in 1MGy region and 144 modules in 200kGy region:

- 1MGy region: 1.5 cm cells
- 200kGy region: 3.0 cm cells and dual R/O

31.03.2020

- move existing 4 cm and 6 cm cells further out into middle and outer region
- > 14'592 channels

S3 new 1MGy and 200kGy regior	<u>ı</u>						
CAL regions		mod./region	#ch./region	#cells/mod.	size (cm)	Z-segments	# channels
.MGy region		32	2048	64	15	2	4096
200 kGy region		144	2304	16	(3.0) (2	4608
niddle 1		176	1584	9	4.0	4	1584
niddle 2		272	1088	4	6.0	1	1088
outer 1		176	704	4	6.0	1	704
outer 2		2512	2512	1	12.0	1	2512
	Totals	3312	10240				14592
S3 new 1MGy region 1.5 cm cells							
CAL regions		mod./region	#ch./region	#cells/mod.	size (cm)	Z-segments	# channels
.MGy region		32	2048	64	15	2	4096
200 kGy region		144	1296	9	4.0) (1	1296
niddle		448	1792	4	6.0	4	1792
outer		2688	2688	1	12.0	1	2688
	Totals	3312	7824				9872

LS4 ECAL configuration options

Light red: new 1MGy modules Dark red: new 200kGy modules Blue: rebuilt or refurbish (dual R/O) existing 40kGy modules Green: reuse existing 40kGy modules (without modification)

LS4 with partlial dual R/O:

- About half of ECAL with dual R/O (Z-segmentation)
- > 21'904 channels

LS4 with full dual R/O:

- Entire ECAL with dual R/O (Z-segmentation)
- > 30'208 channels

Equip high radiation regions with new rad. hard modules with cells of 1.5, 3, 4cm

- Reshuffle as many existing Shashlik modules with 4, 6, 12cm cells into 40kGy region
- Produce new 40kGy modules to compensate lack of modules with 4 and 6cm cells

LS4 full dual R/O							
ECAL regions		mod./region	#ch./region	#cells/mod.	size (cm)	Z-segments	# channels
1MGy region		32	2048	64	1.5	2	4096
200 kGy region		144	2304	16	3.0	2	4608
middle 1		272	2448	9	4.0	2	4896
middle 2		176	1584	9	4.0	2	3168
outer 1		1344	5376	4	6.0	2	10752
outer 2		1344	1344	1	12.0	2	2688
	Totals	3312	15104				30208
LS4 partly dual R/O							
ECAL regions		mod./region	#ch./region	#cells/mod.	size (cm)	Z-segments	# channels
1MGy region		32	2048	64	1.5	2	4096
200 kGy region		144	2304	16	3.0	2	4608
middle 1		272	2448	9	4.0	2	4896
middle 2		176	1584	9	4.0	1	1584
outer 1		896	3584	4	6.0	1	3584
outer 2		448	1792	4	6.0	1	1792
outer 3		1344	1344	1	12.0	1	1344
outer 3	Totals	1344 3312	1344 15104	1	12.0	1	1344 21904
outer 3	Totals	1344 3312	1344 15104	1	12.0	1	1344 21904

31.03.2020

5th Upgrade II Workshop

Andreas Schopper

10

M

31.03.2020

5th Upgrade II Workshop

Andreas Schopper

11

ECAL segmentation with LS4 options

Conclusions and steps towards the FTDR

- > The ECAL in its current configuration cannot cope with neither the radiation nor the occupancy conditions of Upgrade II
- > If we want to keep the ability to reconstruct π^0 and γ at Upgrade II conditions, the ECAL has to undergo a *major* upgrade
- > Upgrade II radiation and occupancy conditions have to fulfill the following (probably minimal) requirements:
 - ✓ Energy resolution as current ECAL of order $\sigma(E)/E \sim 10\%/\sqrt{E \oplus 1\%}$, adding O(10) picoseconds timing capability
 - ✓ 32 new radiation hard (1MGy) modules in hottest region with very high granularity (cell size of \leq 1.5cm)
 - ✓ 144 new radiation tolerant (200kGy) modules in inner region with high granularity (cell size of \leq 3cm)
 - ✓ ~1200 new modules possibly of Shashlik type (40kGy) with medium granularity (cell size of ≤4 and ≤6cm)
 - \checkmark Reuse of ~2000 existing Shashlik modules (possibly after some refurbishment) with 4,6,12cm cell size (out of 3300)
- > Next steps towards the FTDR:
 - ✓ Optimize reconstruction algorithm and determine ECAL 5D (E,x,y,z,t) performance requirements from physics simulation
 - ✓ Finalize R&D on 1MGy SPACAL sampling technology fulfilling required 5D performance (for implemention in LS3)
 - ✓ Start R&D on 200kGy sampling technology (SPACAL, Shashlik,...) fulfilling required 5D performance
 - ✓ Optimize current 40kGy Shashlik technology for timing performance and possibly z-segmentation
 - ✓ Pursue R&D on timing plane at shower maximum (see next talk)
 - ✓ Investigate possible options of photodetectors (PMT, MaPMT, SiPM, ...)
 - ✓ Define readout architecture and intensify R&D on R/O electronics with picosecond capability ("prototypes" in LS3?)
 - ✓ Define "minimal" and "optimal" ECAL configurations for LS3 & LS4 and provide realistic cost estimate

