

5th Workshop on LHCb upgrade II

30 .03 - 01 .04. 2020 Barcelona

ECAL Technologies

Marco Pizzichemi (UniMiB and CERN)

on behalf of the SPACAL R&D group (LHCb and Crystal Clear Collaboration)

Outline

- → Motivation
- → Investigation on garnet-based crystal fibers
- → Spacal 2018 & 2019 prototypes: beamtest results
- → Shashlik beamtest results
- → Photodetectors and readout electronics
- → Timing plane
- → Conclusions and perspectives

Motivation for ECAL upgrade

General upgrade of ECAL

- → Central part (max 32 modules) needs to be replaced already during LS3
- Major upgrade foreseen for LS4 for the rest of the calorimeter, with less demanding radiation requirements

- → Sustain expected radiation dose, up to 1MGy and $\leq 6 \times 10^{15}$ cm⁻² for 1MeV neq/cm² at 300 fb⁻¹
- → Introduce **fast timing** resolution (few tens of ps) for pile up mitigation, and better energy reco.
- → Increase **granularity** to reduce occupancy
- → Keep energy resolution in the order of $\sigma(E)/E \sim 10\%/\sqrt{E \oplus 1\%}$

ECAL upgrade: possible options

Homogeneous Crystal	Shashlik Module	Spaghetti Module
Can require long crystals (order 40 cm) to contain 25 X ₀	Can be made very compact (~ 15-20 cm)	Can be made very compact (~ 15-20 cm)
Fixed Moliere Radius	Tunable Moliere Radius	Tunable Moliere Radius
Good energy resolution, few %/√E (but material budget in front of ECAL should be kept at minimum)	Good energy resolution	Challenging optimization to reach good energy resolution
Very good homogeneity	No radiation-hard WLS fibers (yet) to transport light	Fibers scintillate AND transport light!
Large volume of crystal 🔿 high cost	Some cost optimization possible	Some cost optimization possible

Started R&D on Spaghetti type module (SPACAL)

Crystal fibers production methods

<u>µ-PullingDown</u>

Edge-defined film-fed growth (EFG)

EFG

Feasibility study carried out in the frame of the Intelum project (EU Rise grant 644260)

Crystal fibers for SPACAL

GAGG (FOMOS)

YAG (Crytur)

1.0

0.8

Normalized Intensity 9.0 9.0

0.2

0.0

0

YAG1

YAG2

YAG3

YAG4

YAG5

YAG6

YAG7

YAG8

YAG9

YAG10

YAG11

Czochralski-technique selected for SPACAL R&D activity, since currently it provides the best quality

Radiation Hardness - GAGG

GAGG samples irradiated with proton flux of 3.5 x 10¹⁵ p/cm², 24 GeV (1.03 MGy) at CERN PS

- → Contribution of 2% to constant term of energy (if radiation length $X_0 = 0.8$ cm)
- → Performance of GAGG acceptable after ~1 MGy (100 Mrad) irradiation

Time Resolution - GAGG

→ GAGG samples from several producers characterized in terms of

- Coincidence timing resolution (CTR) @ 511 KeV
- Light output
- Scintillation kinematics

- S. Gundacker et al, NIMA A 891 (2018) 42–52
- → Aimed at producing faster crystals speeding up scintillation process
- → Influence of co-doping on timing performance (especially on rise-time)

First SPACAL prototype - 2018

Performed at CERN SPS H8: 180 GeV muons and 20 GeV electrons

SCSF-78	YAG	SCSF-78	
YAG	GAGG	YAG	
SCSF-78	YAG	SCSF-78	

- \rightarrow W/Cu alloy absorber (75/25), 14.9 g/cm³
- → Module length 20 cm (25 X_0)
- → Longitudinal segmentation: 10 cm + 10 cm
- → 9 cells of 2 x 2 cm² with Moliere Radius ~1.5 cm
- → 1 cell of GAGG and 4 cells of YAG
- → 4 cells of SCSF-78 (KURARAY)

READOUT

- → CAEN TDC V1290N -DWCs readout
- → LeCroy ADC 1182 -Amplitude measurement
- → CAEN DT5742 digitizer -Waveform recording

Marco Pizzichemi, UniMiB & CERN

5th Workshop on LHCb upgrade II - 30 Mar - 1 Apr 2020, Barcelona

Energy resolution with 20 GeV e⁻

With different tilt angles, selecting events hitting a 10 x 10 mm² square in the center of prototype

Material	Photoelectrons/MeV
GAGG	9.71 ± 0.22
YAG	6.76 ± 0.16
Plastic	1.15 ± 0.14

- → GAGG/YAG ratio compatible with lab measurements
- → Efforts to improve light coupling (ray-tracing simulations show factor ~4 light loss)

Timing resolution with 20 GeV e⁻

Time measurement on **GAGG** front cell:

- → PMT Hamamatsu R12421
- → Offline CFD technique
- → Corrected for MCPs reference photodetectors resolution $(\sigma = 21.8 \text{ ps})$
- → Best value $\sigma_{t} = 73 \text{ ps}$

2019 SPACAL prototype

2019 SPACAL prototype

Beam test at DESY: 1 to 5 GeV electrons

Absorber produced by Crytur

→ Pure tungsten absorber

- ➤ 14 cm long
- Density 19 g/cm³
- > 6 YAG cells
- ➤ 3 GAGG cells
- → Cell size 1.5 x 1.5 cm²
- → Each scintillating fiber coupled to **optical fiber**
- → Possibility to test with both PMTs and SiPMs

Energy resolution

Measured with electrons, for various beam angles, from 1 to 5 GeV

Angle [°]	Sampling term [%]	Constant term [%]
0 + 0	13.3	5.1
-1.5 + 0	12.2	4.4
1.5 + 0	13.7	5.7
-3 + 0	11.1	4.9
3 + 0	11.6	5.4
6 + 0	11.0	3.9
1.5 + 1.5	12.6	3.1
3 + 3	11.0	2.0

Material	Front [Ph.e./MeV]	Back [Ph.e./MeV]
GAGG	19 ± 2	11 ± 4
YAG	14 ± 2	10 ± 2

- → Clear dependance on incident angle
- → Overall higher Ph.e. values wrt TB2018
- → But poor homogeneity among cells of same scintillator type (problematic coupling via clear fibers)

Timing resolution

GAGG @ 5 GeV (R7899-20 PMTs)

Angle	Front σ _t	Back σ _t
[°]	[ps]	[ps]
3+3	188	155

→ Performance with PMTs worse than expected

→ Tests with SiPMs show better results (up to 113 ps for GAGG @ 5GeV) suggesting we are not extracting full potential

→ Resolution affected by non-uniformity of Transit Time Spread (TTS) over PMT photocathode

 Use of clear fibers prevents light mixing, as opposed to TB2018 configuration

→ However, plenty of useful information gained in the dataset acquired

→ Better understanding of main factors affecting timing resolution

- > Photo-detector TTS most likely to play dominant role (both absolute value and non-uniformity)
- Impact of light collection/coupling
- Useful information for tuning of MC simulations (see later)

→ Strategies already in place to improve timing resolution in view of next test beam

- Test faster photo-detectors (PMTs, SiPMs)
- > Mitigate impact of TTS non uniformity: light mixers, MA-PMTs, SiPMs
- → Keep in mind that energy range is quite far from region of interest (> 10 Gev)

Timing resolution - shashlik modules

Shashlik technology can be used in Upgrade II in outer part of ECAL and provide timing information

Energy [GeV]	PMT Bias [V]	Time res. σ [ps]
20	800	69
30	800	56
30	750	57

Beam Test 2018

Current ECAL modules with current PMT (R7899-20)

→ In order to reduce effect of shower longitudinal fluctuations, two versions of shashlik were prepared for 2019 beam test

- Split WLS fibers (7+18 X0, mirrored fiber ends)
- Continuous WLS fibers

→ Better than present ECAL modules (65-70 ps achieved at 5 GeV)

- → Planning to try new KURARAY WLS fibers YS-2 (much faster than Y11)
 - Improve time resolution
 - Reduce sensitivity to spillover (shorter pulse lenght, hopefully < 25 ns)

→ Planning to test these prototypes at higher energies (20+ GeV) at SPS, when available

Parametrized simulations for SPACAL

- → MC required for optimization of SPACAL geometry, and study of factors influencing timing resolution
- → Optical photons ray-tracing needed, but extremely CPU-consuming -> parametrization strategies developed

- → Analytic approach valid in approximation of perfect crystal surfaces
- → Hybrid approach allows to take into account surface imperfections
- → Both approaches result in total CPU gain of factor between x100 and x400

Hybrid-MC - preliminary results

- → Hybrid-MC equivalent to full ray-tracing
- → Encouraging preliminary results, work in progress
- → Study of time resolution with different readouts/coupling
 - PMTs, SiPMs etc
 - Clear impact of photo-detector timing resolution

→ Study of faster garnets from different producers

Photodetectors and readout

→ Requirements for Phase-II ECAL photodetector:

- High dynamic range
- High timing accuracy O(20ps)
- Radiation hardness for 300 fb⁻¹ (100 Mrad)

→ Candidates under study: APDs, SiPMs, PMTs

Most mature solution so far remains PMTs (rad-hardness)

→ In any case, **fast waveform sampling** only choice to achieve good timing resolution with SPACAL/Shashlik

> A dedicated ASIC will be required

→ Estimate of key parameters for **electronics readout**

15-30k		
~10%		
12 bits (maybe more needed)		
8 samples per event		
Derandomized waveform (analog or digital)		
Sparsified readout		

Readout Architectures

Investigations on different readout architectures ongoing (beam tests 2019 and 2020 can provide insight)

- → Rate of data transmission crucial, needs to be taken into account
- → Different strategies for **signal processing** are also being investigated (calorimeter crates vs. online system)

Timing plane with MCPs

Possibility to embed a timing plane based on MCPs in the SPACAL configuration is under investigation

- → The photocathode of MCP-PMTs is needed if high efficiency on single electrons is required
- → If several charged particles are available (after a few X₀ in an electromagnetic shower) 100% efficiency can be achieved even if photocathode is removed -> iMCPs (ionization-mode MCPs)
- → Good timing precision can be obtained independently of shower depth (temporal coherence)
- → Embedding a ~1 cm i-MCP layer in the SPACAL, placed around the shower maximum, can fit the dual readout, asymmetric configuration and provide fast timing information

Marco Pizzichemi, UniMiB & CERN

5th Workshop on LHCb upgrade II - 30 Mar - 1 Apr 2020, Barcelona

Timing resolution, i-MCPs

Timing resolution of **i-MCPs** improves after a few radiation lengths

- → In this example, timing resolution of one i-MPC layer placed after an absorber with variable radiation lengths
- \rightarrow Around **20 ps** obtained after **5X**₀ on beam test with 20 GeV electrons
- → With some R&D efforts, this resolution could be further improved

R&D efforts with i-MCPs

To explore feasibility of this approach, it is mandatory to reduce costs and improve radiation tolerance

Turbo pump

→ Exploring feasibility of technologies developed in recent years based on atomic layer deposition (ALD) of resistive and emissive layers on borosilicate glass

- ➤ Wafer size up to 20x20 cm²
- Enhanced secondary electron emission
- Prolonged device lifetime is predicted
- → First tests on ALD MPCs ongoing at INFN MiB and BO laboratories
- → Keeping open mind to other production methods under development by several producers
- → Strong R&D needed to answer many open questions

Conclusions

→ SPACAL configuration can represent a viable solution for the innermost part of ECAL

- > Allows tuning of cell size, enabling reduction of occupancy
- > Can provide radiation hardness with appropriate crystal materials
- R&D effort initiated by the collaboration

→ Beam tests on first SPACAL prototypes carried out in 2018 and 2019

- > Energy resolution in the right ballpark
- Timing resolution in 2019 configuration worse than expected. Sources of degradation identified, mitigation strategies defined for next prototypes

→ Based on the knowledge acquired in beam tests, investigation continues on different

- Crystal scintillators
- > Photo-detectors
- > Readout architectures
- → The possibility of developing a timing plane based on i-MCPs is under study
- → Strategies in place to improve timing resolution for SPACAL configuration for future beam tests
- → For the moment, given current situation, concentrating on MC-simulation efforts

5th Workshop on LHCb upgrade II

30 .03 - 01 .04. 2020 Barcelona

Thank you for your attention!

5th Workshop on LHCb upgrade II - 30 Mar - 1 Apr 2020, Barcelona