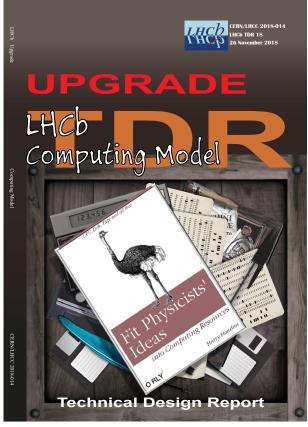
Offline computing requirements for Run4, Run5, Run6

5th Workshop on LHCb Upgrade 2 April 1st 2020 Concezio Bozzi

Istituto Nazionale di Fisica Nucleare

Disclaimer


- Looking 10+ years ahead in software and computing is challenging
- Many emerging technologies, in both computing, see e.g. Conor's talk, and storage
- Paradigm shifts ahead, e.g.
 - in-memory and neuromorphic computing
 - Non-volatile memory systems
 - Advanced tape technologies
 - Quantum technologies
- Not clear if and how all these will fit in the offline computing environment of HEP experiments
- In the following, an attempt is made to extrapolate the U1 computing model to U1b and U2, with the only purpose of qualitatively establishing (or not) its viability

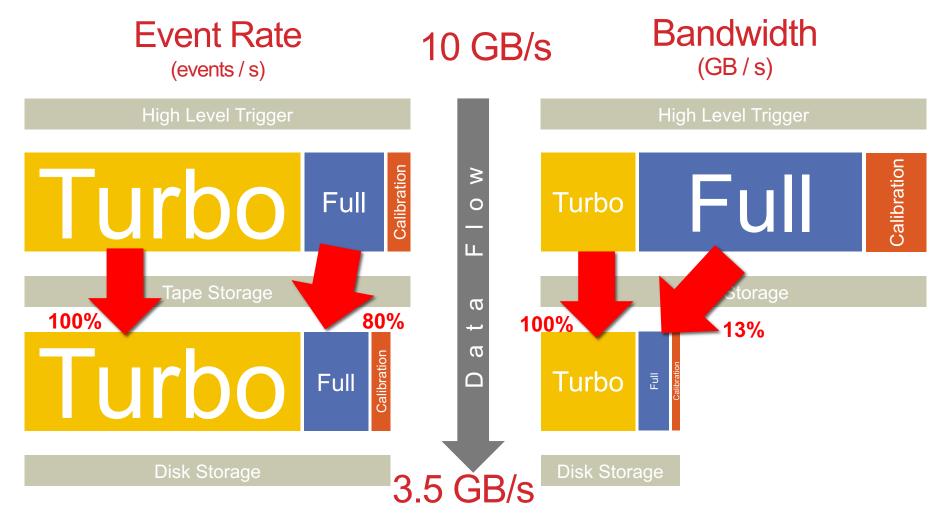
Overview

- Upgrade 1 computing model
- Extrapolation assumptions
- Resource requirements

Outlook

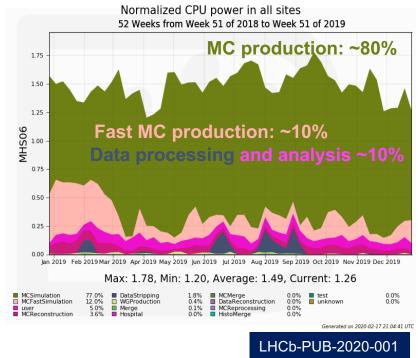
https://cds.cern.ch/record/2319756

Upgrade 1: storage scales with bandwidth


Throughput to tape

- Bandwidth from online to offline:10 GB per live LHC second
 - Saved to to tape
- Reduce by ~1/6 FULL and Calibration data volume with "sprucing"
 - 3.5 GB/s saved to disk

stream	rate fraction	throughput (GB/s)	bandwidth fraction
FULL	26%	5.9	59%
Turbo	68%	2.5	25%
TurCal	6%	1.6	16%
total	100%	10.0	100%

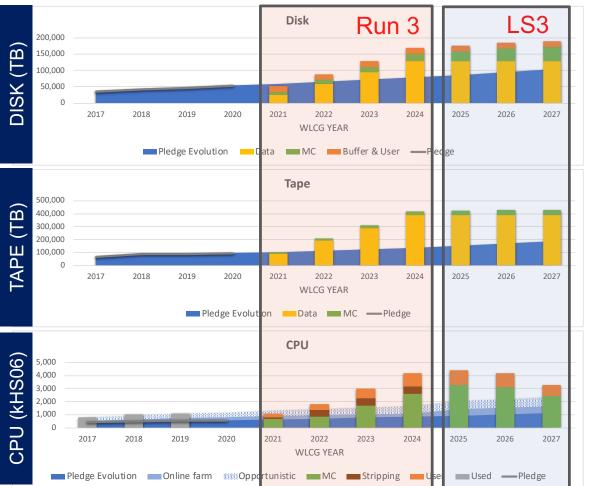

Throughput to disk

stream	throughput (GB/s)	bandwidth fraction
FULL	0.8	22%
Turbo	2.5	72%
TurCal	0.2	6%
total	3.5	100%

Upgrade 1: CPU dominated by MC production

- MC simulation is the main consumer and it will stay so in the future
- Current MC production is scaled to estimate the CPU needs in Upgrade 1
 - Simulation of a given data taking year continues during the following 6 years, starting slowly and ending gracefully
- Number of needed MC events scale with luminosity
 - Seen "experimentally" in Run 2
 - Well justified by physics
 - Events signal-dominated
 - Generally pure selections
 - $L_{int} \; x \; \epsilon_{trig}$ is a good proxy for yield

Upgrade 1 Computing Model parameters

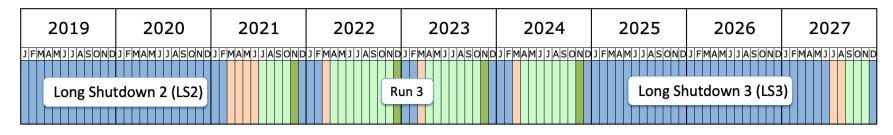

- Storage accommodates trigger output BW of 10 GB/s
 - Fully saved on tape
 - Reduced to 3.5GB/s on disk after sprucing FULL and TURCAL streams
- CPU dominated by MC production
 - Massive use of fast(er) simulation techniques

LHCb Run3 Computing Model assumptions				
$L(cm^{-2}s^{-1})$	2×10 ³³			
Pileup	6			
Running time (s)	$5 \times 10^{6} (2.5 \times 10^{6} \text{ in } 2021)$			
Integrated luminosity	10 fb ⁻¹ (5 fb ⁻¹ in 2021)			
Trigger rate fraction (%)	26 / 68 / 6 Full/Turbo/TurCal			
Logical bandwidth to tape (GB/s)	10 (5.9 / 2.5 / 1.6 Full/Turbo/TurCal)			
Logical bandwidth to disk (GB/s)	3.5 (0.8 / 2.5 / 0.2 Full/Turbo/TurCal)			
Ratio Turbo/FULL event size	16.7%			
Ratio full/fast/param. MC	40:40:20			
HS06.s per event for full/fast/param. MC ^a	1200 / 400 / 20			
Number or MC events ^b	4.8×10^9 / fb ⁻¹ / year			
Data replicas on tape	2 (1 for derived data)			
Data replicas on disk	2 (Turbo); 3 (Full, TurCal)			
MC replicas on tape	1 (MDST)			
MC replicas on disk	0.3 (MDST, 30% of the total dataset)			

WLCOCresponding to 120, 40, 2s on a 10HSODiskuppering Tape (PB) CPU (kHS06)

^b simulation of year N starts in year N+1

Resource requirements: Upgrade 1



- Taking into account the new LHC schedule: 2024 is a running year
- Pledge evolution assumes a "constant budget" model of +10% more every year
 - Given as a gauging term
 - This used to be +20%
- As a consequence, no longer on flat budget at the end of LS3

Evolving to Upgrade 1b / Upgrade 2

- Scale bandwidth to offline with luminosity: x1.5 (U1b), x10 (U2)
- Apply same factors to scale the number of events to simulate
- Other parameters of the Upgrade 1 computing model are kept unchanged, e.g.
 - Number of disk replicas
 - MC simulation model
 - Bandwidth reduction factor from sprucing
 - Bandwidth division between TURBO:FULL:TURCAL
 - CPU work for MC, stripping and analysis
 - Assume that increase due to increased event complexity is balanced by code speed-up
- Keep it simple, give a ballpark estimate

LHC schedule

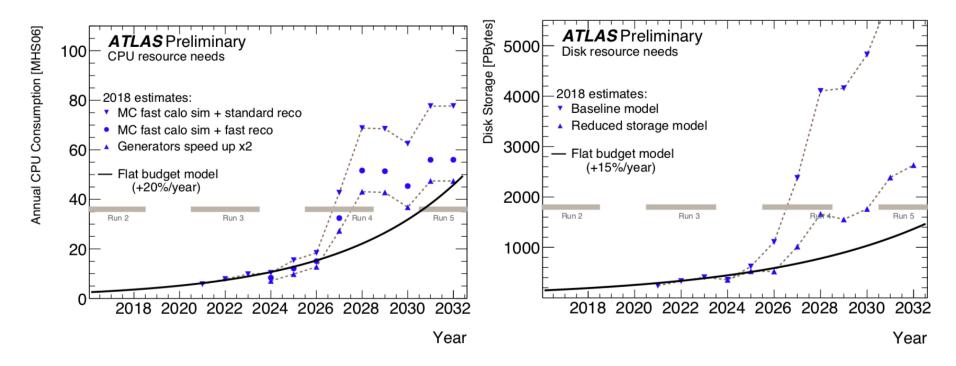
2028	2029	2030	2031	2032	2033	2034	2035	2036
J FMAMJ J ASOND	Run 4	J FMAMJ J ASOND		J FMAMJ J ASOND	Run 5	J FMAMJ J ASOND	JFMAMJJASOND LS5	JFMAMJJASOND
Shutdown Protons ph Commissi Ions					(my e	xtrapolation)	2037 JFMAMJJASOND	2038 DIFMAMJJASOND

Resource requirements: U1 + U1b

- Overshoot wrt "constant budget" increases (~2x)
- At LS4:
 - Disk: 375PB
 - Tape: 900PB
 - CPU: 5MHS06
 ~500k cores
- Compare with e.g. ATLAS+CMS 2020 pledges:
 - Disk: 400PB
 - Tape: 600PB
 - CPU: 5MHS06

Resource requirements: U1 + U1b + U2

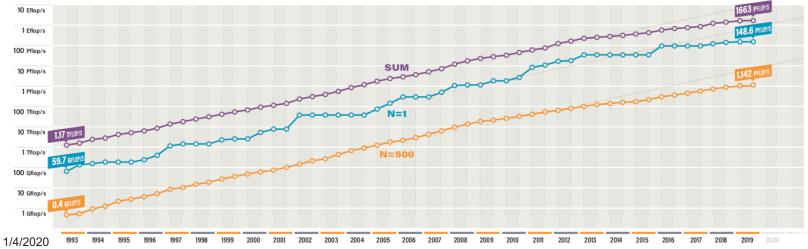
- Entering a different regime
 - Storage: a few exabytes (x10 wrt constant budget)
 - Compute: tens of MHS06 (x20 wrt constant budget)
- End of Run5 (Run6):
 - Disk: 1.5 (2.9) EB
 - Tape: 4 (7) EB
 - CPU: 40 (57) MHS06
 - ~4M (6M) cores
- Compare with e.g. ATLAS^(*) end of Run4 (Run5):
 - Storage: 4 (8+) EB
 - CPU: 60 (80) MHS06


(*) see backup: baseline model, before mitigations

Outlook

- The U1 computing model might still be sustainable for U1b, with some readjustments
- It is definitely not sustainable for U2
 - Turning the usual handles (e.g. replicas, filtering) will not buy the required mitigation factors
 - Will a significant reduction of the bandwidth to offline be possible without compromising our physics programme?
 - Is there such a need for simulation? Can we reduce the number of simulated events?
 - Will there be one (or more) technological white knight(s) coming to rescue?
- We need to invest in R&D and re-think our strategy
 - ATL+CMS are already doing this for Run4

ATLAS HL_LHC


PRESENTED BY

	SYSTEM	SPECS	SITE	COUNTRY	CORES	RMAX PFLOP/S	POWER MW
1	Summit	IBM POWER9 (22C, 3.07GHz), NVIDIA Volta GV100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/SC/ORNL	USA	2,414,592	148.6	11.4
2	Sierra	IBM POWER9 (22C, 3.1GHz), NVIDIA Tesla V100 (80C), Dual-Rail Mellanox EDR Infiniband	DOE/NNSA/LLNL	USA	1,572,480	94.6	7.44
3	Sunway TaihuLight	Shenwei SW26010 (260C, 1.45 GHz) Custom Interconnect	NSCC in Wuxi	China	10,649,600	93.0	15.4
4	Tianhe-2A (Milkyway-2A)	Intel Ivy Bridge (12C, 2.2 GHz) & TH Express-2, Matrix-2000	NSCC Guangzhou	China	4,981,760	61.4	18.5
5	Frontera	Dell C6420, Xeon Platinum 8280 28C 2.7GHz, Mellanox InfiniBand HDR	TACC/U of Texas	USA	448,448	23.5	-

Performance Development

