

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

Rare B Decays at LHCb Upgrade II

Javier Virto

Universitat de Barcelona

Investigación Programa Ramón y Cajal

5th Workshop on LHCb Upgrade II – Barcelona – April 1st, 2020

Rare B Decays:

- FCNCs (leptonic, rare semileptonic, rare hadronic)
- Lepton-Universality-Violating observables
- Lepton-Flavor-Violating modes
- Lepton-Number-Violating modes

Strong suppression of these decays in the SM \Rightarrow Smoking guns of NP

BUT: FCNCs are no longer "rare" for LHCb!

e.g. $N_{events}(Run 1) = 2398$; $N_{events}(2016) = 2187$ for $B \rightarrow K^* \mu \mu$

And will become "quite-common" decays at Upgrade II.

Considerations about rare vs. clean

- Generically "rare" implies "clean" because theory (QCD) uncertainties are proportional to the observable quantity (thus irrelevant).
- Only useful if allowed NP is large compared to SM "prediction"/"bound". (i.e., if observable \simeq "smoking gun")
- This is *t*-dependent, and situation changes as: (Exp. driven!)
 - 1. Pheno bounds restrict NP space (scale and/or eff. couplings)
 - 2. Experimental analyses improve
- As soon as we start probing SM predictions with 10-20% (experimental) precision, the "rare"-"clean" ideology breaks down

Note: but "Rare" still means we are probing very high NP scales!! But improvement is harder... **Conclusion:** Opportunity to study **BOTH** *New Physics* and *QCD* in "rare" decays.

The point I want to discuss in this talk is that:

the intensive physics program at LHCb Upgrade II is such that experimental data can be used to improve *SM* (*QCD*) *predictions*, allowing for finer and more reliable *New Physics analyses*.

Topics to be discussed :

- + Current fits to $b \rightarrow s\ell\ell$ (including 2020) and future
- Tests: correlations in form factors
- Tests: momentum and helicity dependence of Non-local effects.
- Local form factors: sum rules and width effects
- Non-local form factors: analyticity
- Non-local form factors @ high-q²: *K*-matrix
- (Time dependence)
- (Non-local form factors: SU(3) connection $b \rightarrow s$ and $b \rightarrow d$)

Current fits to $b \rightarrow s\ell\ell$ (New R_K and P'_5 measurements (LHCb 2019, 2020))

More details: Algeró et al. Addendum to Eur.Phys.J.C 79 (2019)

S.Descotes Genon, Talk at "Beyond the flavour anomalies", WED April 1st, 14:00 CEST (https://zoom.us/j/325145602)

Javier Virto

Rare B Decays at LHCb Upgrade II

U. Barcelona, February 3rd 2020

6/21

Javier Virto

Ъ2

0.8

Rare B Decays at LHCb Upgrade II

□ Phase-2 will put some experimental errors to negligible levels

CERN-LHCC-2017-003, LHCb Eol

Descotes-Genon, Matias, Ramon, Virto 1207.2753 $\square \text{ Bottleneck is SM uncertainties:}$ Assuming vanishing exp uncertainties $Pull(P_5^{\prime [2.5,4.0]}) = 3.5\sigma \xrightarrow{2020} 2.8\sigma$ $Pull(P_5^{\prime [4.0,6.0]}) = 6.5\sigma \xrightarrow{2020} 4.8\sigma$ $Pull(P_5^{\prime [6.0,8.0]}) = 5.4\sigma \xrightarrow{2020} 4.5\sigma$

U. Barcelona, February 3rd 2020

\Rightarrow Need to improve theory uncertainties ("Local" and "Non-local" Form Factors)

About the future

□ By 2030, the (LFUV) anomalies will be either confirmed or ruled-out independently by LHCb Phase-1 and Belle II. Albrecht et a

Albrecht et al, 1709.10308

Tests: Redundancy provides form factor info

Descotes-Genon, Hofer, Matias, Virto 2016

Data will only be consistent with certain form factor values....

.... and may need NP for that!

Javier Virto

Rare B Decays at LHCb Upgrade II

U. Barcelona, February 3rd 2020

8/21

Tests: NP contributions to WCs are *q*²-independent

Descotes-Genon, Hofer, Matias, Virto 2016

Fits provide a-posteriori tests that q²-dependence of non-local effects is correct and passing this test (with finer binning) will be increasingly harder!

9/21

Rare B Decays at LHCb Upgrade II

Tests: NP contributions to WCs are helicity-independent

Altmannshofer, Niehoff, Stangl, Straub 1703.09189

Fits provide a-posteriori tests that λ -dependence of non-local effects is correct and passing this test will be increasingly harder!

U. Barcelona, February 3rd 2020

10/21

Rare B Decays at LHCb Upgrade II

Tests: Same with mode-independence

Consistency at EFT-level is Model-Indep. and a data-driven test of Theory (QCD). [Note: Inclusive mode has its own non-local effect]

Javier Virto

Rare B Decays at LHCb Upgrade II

U. Barcelona, February 3rd 2020

Form factors for unstable mesons (e.g., K^*): width effects

 \Rightarrow BRs are corrected by a factor $|\mathcal{W}_{K^*}|^2 \simeq 1.2$ (increasing anomalies)

Javier Virto

U. Barcelona, February 3rd 2020

Form factors for unstable mesons (e.g., K^*)

Descotes-Genon, Khodjamirian, Virto 2019

 $\alpha = 1: \ \mathcal{F}_{K^*,\perp}(0) = 0.28; \ \alpha = 10: \ \mathcal{F}_{K^*,\perp}(0) = 0.22; \ \alpha = 50: \ \mathcal{F}_{K^*,\perp}(0) = 0.11.$

Javier Virto

U. Barcelona, February 3rd 2020 13/21

High $K\pi$ -Mass Moments in $B \to K\pi\ell\ell$

Descotes-Genon, Khodjamirian, Virto 2019

Differential decay rate including S,P,D waves – – [$d\Omega = d\cos\theta_\ell d\cos\theta_\kappa d\phi$]

$$\frac{d\Gamma}{dq^2 dk^2 d\Omega} = \frac{1}{4\pi} \sum_{i=1}^{41} f_i(\Omega) \tilde{\Gamma}_i(q^2, k^2)$$

The 41 moments $\tilde{\Gamma}_i(q^2, k^2)$ have been measured by LHCb (arXiv: 1609.04736) in the bins

 $\sqrt{k^2} \in [1.33, 1.53] \text{GeV}$, $q^2 \in [1.1, 6] \text{GeV}^2$

High $K\pi$ -Mass Moments in $B \to K\pi\ell\ell$

Example: $\langle M_{\parallel} \rangle$ (= some smart combination of moments) :

Bounds: From $\langle M_{\parallel} \rangle$: $\alpha \lesssim 11$; From $\langle M_{\perp} \rangle$: $\alpha \lesssim 17$; From $\langle M_{re} \rangle$: $\alpha \lesssim 18$. So far bounds from *dBR* are stronger (something like $\alpha \lesssim 3$).

Javier Virto

Rare B Decays at LHCb Upgrade II

U. Barcelona, February 3rd 2020

Non-local Form Factors: OPE + dispersion relations

$$\mathcal{H}_{\lambda,x}(q^2) = \mathcal{H}_{\lambda,x}^{\text{OPE}}(q_0^2 < 0) + (q^2 - q_0^2) \int_{s_{\text{th}}}^{\infty} dt \, \frac{\rho_{\lambda,x}(t)}{(t - q^2 - i\epsilon)(t - q_0^2)}$$

• $\mathcal{H}_{\lambda,x}^{OPE}(q_0^2)$: Theory

e.g. Khodjamirian et al 2010, 2012; Asatrian, Greub, Virto 2019

- $\rho_{\lambda,c}(t): B \to K^{(*)}J/\psi, B \to K^{(*)}\psi(2S), B \to K^{(*)}D\bar{D}, ...$
- $\cdot \rho_{\lambda,sb}(t) : B \to K^{(*)}\phi, B \to K^{(*)}\overline{K}K, ...$
- $\rho_{\lambda,ud}(t): B \to K^{(*)}\rho, B \to K^{(*)}\omega, B \to K^{(*)}\pi\pi, B \to K^{(*)}\pi\pi\pi, ...$

Charm contribution → numerically leading

From OPE region to physical region requires DATA ($B \rightarrow K^{(*)} X_{1--}$)

Javier Virto

U. Barcelona, February 3rd 2020

Non-local Form Factors: analyticity

Constrain non-local effect with $B \to K^* \psi_n$ | Use interresonance $B \to K^* \ell \ell$ DATA

 $\begin{array}{rcl} \mathsf{PRIOR} & \Rightarrow & \mathsf{SM} \mbox{ prediction for } B \to K^* \mu \mu \\ \\ \mathsf{POSTERIOR} & \Rightarrow & \mathsf{SM} \mbox{ prediction for } B \to K^* e^+ e^- \Rightarrow & \mathsf{LFU} \mbox{ tests!} \\ & \Rightarrow & SU(3) \mbox{ prediction for } b \to d\ell\ell -- (\mbox{ requires more discussion}) \end{array}$

For prospects from LHCb see A.Mauri et al

Javier Virto

U. Barcelona, February 3rd 2020 18/21

P-vector (*K*-matrix) approach to $B \rightarrow K^* \ell \ell$ @ high- q^2

- empirically: $\bullet > \bullet$
- prediction: ψ (4160) should be more even more visible in $B \rightarrow KD\overline{D}$!

Κ

D

P-vector (K-matrix) approach to $B \rightarrow K^* \ell \ell$ (**(a) high-** q^2 Kürten, van Dyk, et al, w.i.p

Channels: Only $J^{PC} = 1^{--} \overline{c}c$ states, plus an "eff. channel" associated to the ratio R_c .

	e+e-	$D^0 \overline{D}^0$	$D^{+}_{(s)}D^{-}_{(s)}$	$D^0 \overline{D}^{*0}$	$D^{+}_{(s)}D^{*-}_{(s)}$	$D^{*0}\bar{D}^{*0}$	$D_{(s)}^{*+}D_{(s)}^{*-}$	B <i>k</i> ^(∗)
e+e-								\heartsuit
$D^0 \overline{D}^0$	÷							÷
$D^{+}_{(s)}D^{-}_{(s)}$	÷							0
$D^0 \overline{D}^{*0}$	÷							0
$D^{+}_{(s)}D^{*-}_{(s)}$	÷							0
$D^{*0}\bar{D}^{*0}$	÷							0
$D_{(s)}^{*+}D_{(s)}^{*-}$	÷							0

Resonances: ψ (3770, 4040, 4160, 4415), X(3940, 4230, 4260, 4360, 4660)

Highly non-trivial fit to all $c\bar{c} \Rightarrow \text{LOCAL prediction for } B \rightarrow K^{(*)}\ell\ell$

lavier Virto

U. Barcelona, February 3rd 2020

20/21

Summary

The wealth of data collected at Upgrade II will allow to **test, improve and produce precise SM predictions** for rare decays. This will force us to push the limits of our theoretical approaches to QCD effects.

In particular,

- Global fits will challenge our theoretical input independently of New Physics
- Data-driven approaches to local and non-local form factors will dominate
- A "hyper-global" approach to rare decays will be implemented, addressing simultaneously New Physics and QCD by the interplay of many different modes and observables.

I have shown that this has already started, but data is not yet precise enough.

Everything applies to **BARYONIC decays**, too, and including these is part of the Upgrade II program and the "hyper-global" approach.