CP violation at Upgrade II

> Alexander Lenz, IPPP Durham Barcelona/Witton Gilbert 1st April 2020

We are living in troubled times

I strongly hope all of you and your families and friends are still fine

Nevertheless/Because of that we should keep up the good mood, keep things going and make the best out of these times

Here the situation is still ok
For me the most troublesome development so far was

For me the most troublesome development so far was

So I was immediately checking my former PhD student Matthew Kirk who is now post-doc in Rome And I got this reply

Relief from Rome

My Tasks

1. Highly precise request: Dear Alex, we would like to invite you to give a talk about "CP violation at Upgrade II"
2. Many of my theory colleagues are now even more socially distanced than usually

=> Make a poll among my theory colleagues

Dear xxx,

I was asked to present a talk about
"CP violation in Beauty and Charm" at the LHCb Upgrade II on April ist (no joke!)
at the now virtual Barcelona workshop.

Therefore I would like to ask several experts on what they consider to be the (up to 3) most important future topics related to $C P$ violation in beauty and charm.

14 Replies from: Andrzej Buras, Sebastian Jäger, Yuval Grosman, Uli Nierste, Marco Cíuchiní, Jure Zupan, Gudrun Hiller, Thorsten Feldmann, Zoltan Ligeti, Thomas Mannel, Danny van Dyk, Svjetlana Fajfer, Gino Isidorí, Luca Silvestrini

- Mixing induced CPV in charm IIIIIII
- B $\rightarrow>{ }^{(*}\left(^{*}\right) \mathrm{mu}$ mu and friends: IIII
- Gamma below 1\% IIII
- A_CP (D_0-> K+K-), A_CP (D_0-> pi +pi-) IIII
- Sort out penguin pollution for beta, beta_s II
- B-> 3 bodies II
- epsilon'/epsilon -> relation to charm due to SU(2)_L II
- A_CP (D_0-> K_S K_S), A_CP (D_0-> K* K_S) II
- A_CP in rare charm decays D-> pi (pi) mu mu.... II
- b-> c \bar\{c\} s -> non-leptonic (lifetimes)
- A_CP in c-> u gamma, Lambda_c $->$ p gamma
- S_f in b->s qq transitions
- A_SL

Theoretical control	CPV in	Formulae	Example	Problems
***	Mixing	$a_{\mathrm{fs}}^{s}=\frac{\Gamma\left(\bar{B}_{s}^{0}(t) \rightarrow f\right)-\Gamma\left(B_{s}^{0}(t) \rightarrow \bar{f}\right)}{\Gamma\left(\bar{B}_{s}^{0}(t) \rightarrow f\right)+\Gamma\left(B_{s}^{0}(t) \rightarrow \bar{f}\right)} \equiv a_{\mathrm{sl}}^{s}$	$B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+}$or $B_{s}^{0} \rightarrow$ Xlv	Convergence of HQE
**	Interference	$A_{C P, f}(t)=\frac{\Gamma\left(\bar{B}_{s}^{0}(t) \rightarrow f\right)-\Gamma\left(B_{s}^{0}(t) \rightarrow f\right)}{\Gamma\left(\bar{B}_{s}^{0}(t) \rightarrow f\right)+\Gamma\left(B_{s}^{0}(t) \rightarrow f\right)}$.	$B_{s} \rightarrow J / \psi \phi$	Penguin pollution
*	Decay	$A_{\text {dir. } C P . f}(t)=\frac{\Gamma\left(\bar{B}_{s}^{0}(t) \rightarrow \bar{f}\right)-\Gamma\left(B_{s}^{0}(t) \rightarrow f\right)}{\Gamma\left(\bar{B}_{s}^{0}(t) \rightarrow \bar{f}\right)+\Gamma\left(B_{s}^{0}(t) \rightarrow f\right)}$	$B_{s}^{0} \rightarrow K^{-} \pi^{+}$	Strong phases+ penguin/tree

Marina Artuso
Department of Physics, Syracuse University, Syracuse, New York 13244, USA
Guennadi Borissov
Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom
Alexander Lenz
Institute for Particle Physics Phenomenology, Durham University, South Road, Durham DH1 3LE, United Kingdom
$\left.\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { Theoretical } \\ \text { control }\end{array} & \text { CPV in } & & =\left|\frac{\Gamma_{12}^{s}}{M_{12}^{s}}\right| \sin \phi_{12}^{s} .\end{array} \begin{array}{c}\text { Convergence of } \\ \text { HQE }\end{array}\right]$

CP violation in mixing and gamma

- Mixing induced CPV in charm IIIIII

- Gamma below 1\% III
- A_CP (D_0-> K+K-), A_CP (D_0-> pi +pi-) III
- Sort out penguin pollution for beta, beta_s II
- B-> 3 bodies II
- epsilon'/epsilon -> relation to charm due to $\operatorname{SU}(2)$ L II
- A_CP (D_0-> K_S K_S), A_CP (D_0-> K* K_S) II
- A_CP in rare charm decays D-> pi (pi) mu mu.... II
- b->c \backslash bar\{c\} $s->$ non-leptonic (lifetimes)
- A_CP in c-> u gamma, Lambda_c ->p gamma
- S_f in b->s qq transitions
- A_SL

CP violation in mixing and gamma

$\left|M_{12}\right|,\left|\Gamma_{12}\right|$ and $\phi=\arg \left(-M_{12} / \Gamma_{12}\right)$ can be related to three observables:

- Mass difference: $\Delta M:=M_{H}-M_{L} \approx 2\left|M_{12}\right|$ (off-shell) $\left|M_{12}\right|$: heavy internal particles: t, SUSY, ...
- Decay rate difference: $\Delta \Gamma:=\Gamma_{L}-\Gamma_{H} \approx 2\left|\Gamma_{12}\right| \cos \phi$ (on-shell)
$\left|\Gamma_{12}\right|$: light internal particles: u, c, ... (almost) no NP!!!
- Flavor specific/semi-leptonic CP asymmetries: e.g. $B_{q} \rightarrow X l \nu$ (semi-leptonic)

$$
a_{s l} \equiv a_{f s}=\frac{\Gamma\left(\bar{B}_{q}(t) \rightarrow f\right)-\Gamma\left(B_{q}(t) \rightarrow \bar{f}\right)}{\Gamma\left(\bar{B}_{q}(t) \rightarrow f\right)+\Gamma\left(B_{q}(t) \rightarrow \bar{f}\right)}=\left|\frac{\Gamma_{12}}{M_{12}}\right| \sin \phi
$$

$C P$ violation in mixing and gamma

CP violation in mixing and gamma

$\Delta M_{s}^{\mathrm{SM}}$	This work	ABL 2015	LN 2011	LN 2006
Central Value	$18.77 \mathrm{ps}^{-1}$	$18.3 \mathrm{ps}^{-1}$	$17.3 \mathrm{ps}^{-1}$	$19.3 \mathrm{ps}^{-1}$
$\delta\left(f_{B_{s}} \sqrt{B_{1}}\right)$	3.1%	13.9%	13.5%	34.1%
$\delta\left(V_{c b}\right)$	3.4%	4.9%	3.4%	4.9%
$\delta\left(m_{t}\right)$	0.3%	0.7%	1.1%	1.8%
$\delta\left(\alpha_{s}\right)$	0.2%	0.1%	0.4%	2.0%
$\delta(\gamma)$	0.1%	0.1%	0.3%	1.0%
$\delta\left(\left\|V_{u b} / V_{c b}\right\|\right)$	$<0.1 \%$	0.1%	0.2%	0.5%
$\delta\left(\bar{m}_{b}\right)$	$<0.1 \%$	$<0.1 \%$	0.1%	---
$\sum \delta$	4.6%	14.8%	14.0%	34.6%

AL, 2019

Thanks to Lattice, Sum rules

Fix V_us and try to use B_s and B_d mixing (independent of V_ub) to determine V_cb \& gamma,....

CP violation in mixing and gamma

Within the SM we get
King, Kirk, AL, Rauh
1911.07856

Vub unconstrained, upper limit on gamma?

CP violation in mixing and gamma

Upper limit on gamma?

King, Kirk, AL, Rauh 1911.07856
$\gamma \leq 66.9^{\circ} \quad[5 \sigma]$
or

- BSM in mixing
- BSM in non-leptonic tree-level decays

Brod, AL, Tetlalmatzi-Xolocotzi 1412.1446, PRD AL, Tetlalmatzi-Xolocotzi 1912.07621

$C P$ violation in mixing and gamma

The amazing cleanliness of gamma is based on assuming
no BSM effects in non-leptonic tree-level decays

The ultimate theoretical error on γ from $B \rightarrow D K$ decays Joachim Brod (Cincinnati U.), Jure Zupan (Cincinnati U.) (Aug 26, 2013) Published in: JHEP 01 (2014) 051 • e-Print: 1308.5663 [hep-ph]

In view of an ever increasing experimental precision, how well is this assumption justified?
Look at observables, that are reasonably well known in theory and experiment and try to identify the potential space for BSM effects in the Wilson coefficients C_1 and C_2 for non-leptonic tree-level decays

Model-independent bounds on new physics effects in non-leptonic tree-level decays of B-mesons Alexander Lenz (Durham U., IPPP), Gilberto Tetlalmatzi-Xolocotzi (Siegen U. and Nikhef, Amsterdam) (Dec 16, 2019) e-Print: 1912.07621 [hep-ph]

Perfect self-isolation reading material: 100 pages!!!

$C P$ violation in mixing and gamma

CP violation in mixing and gamma

Universal Fit

Universal Fit

CP violation in mixing and gamma

Within the SM we get

$$
\gamma=(63.4 \pm 0.9)^{\text {b }}
$$

$$
\left|V_{c b}\right|=(41.6 \pm 0.7) \cdot 10
$$

Competitive precision for Vcb - favours inclusive value, upper limit on gamma

CP violation in mixing and gamma

For predicting CPV in mixing we need Gamma_12 besides M_12

Total decay rate can be expanded in inverse powers of mb

$$
\Gamma=\Gamma_{0}+\frac{\Lambda^{2}}{m_{b}^{2}} \Gamma_{2}+\frac{\Lambda^{3}}{m_{b}^{3}} \Gamma_{3}+\frac{\Lambda^{4}}{m_{b}^{4}} \Gamma_{4}+\ldots
$$

Each term in the series can be further expanded in the strong coupling

$$
\Gamma_{j}=\Gamma_{j}^{(0)}+\frac{\alpha_{s}(\mu)}{4 \pi} \Gamma_{j}^{(1)}+\frac{\alpha_{s}^{2}(\mu)}{(4 \pi)^{2}} \Gamma_{j}^{(2)}+\ldots
$$

Each term is a product of a perturbative function and the matrix element of Delta $\mathbf{B}=\mathbf{0}$ operators (lattice, sum rules)

Mixing obeys a similar HQE

$$
\Gamma_{12}^{q}=\left(\frac{\Lambda}{m_{b}}\right)^{3} \Gamma_{3}+\left(\frac{\Lambda}{m_{b}}\right)^{4} \Gamma_{4}+\ldots
$$

Now Delta B = 2 operators appear (lattice , sum rules)

CP violation in mixing and gamma

$$
\Im\left(\frac{\Gamma_{12}^{q}}{M_{12}^{q}}\right)=a_{s l}^{q}
$$

$$
\Delta \Gamma_{s}^{\mathrm{SM} 2019}=(0.091 \pm 0.013) \mathrm{ps}^{-1}
$$

$$
\Delta \Gamma_{s}^{\mathrm{HFLAV} 2019}=(0.088 \pm 0.006) \mathrm{ps}^{-1}
$$

$$
\begin{aligned}
& \Delta \Gamma_{d}^{\mathrm{SM}} 2019=(2.6 \pm 0.4) \cdot 10^{-3} \mathrm{ps}^{-1} \\
& \Delta \Gamma_{d}^{\mathrm{HFLAV} 2019}=(-1.3 \pm 6.6) \cdot 10^{-3} \mathrm{ps}^{-1}
\end{aligned}
$$

- Decay constants cancel completely
- Bag parameter cancel largely

- Strong test of HQE
- Violation of Quark hadron duality must be small
CP violation in mixing and gamma

$$
\begin{aligned}
& a_{f s}^{s, \text { SM } 2019}=(2.06 \pm 0.18) \cdot 10^{-5} \\
& a_{f s}^{s, \text { HFLAV 2019 }}=(-60 \pm 280) \cdot 10^{-5} \\
& a_{f s}^{d, \text { SM } 2019}=-(4.73 \pm 0.42) \cdot 10^{-4} \\
& a_{f s}^{d, \text { HFLAV 2019 }}=(-21 \pm 17) \cdot 10^{-4}
\end{aligned}
$$

- Decay constants cancel completely
- Bag parameter cancel largely

- Very sensitive to BSM effects!
- In particular to CPV BSM effects in tree-level decays
- Experimental number needed

CP violation in mixing and gamma
 Further HQE tests from study of hadron lifetimes

1. HQE with Bag parameter from HQET sum rules works well!
2. Lattice confirmation urgently needed
3. Still higher experimental accuracy for Bs lifetime needed
4. Soon some theory surprises

Motivation

$\mathrm{Bs} / \mathrm{Bd}$ lifetime ratios gives strong constraints on BSM effects in $C_{-} 1,2$

CP violation in mixing and gamma

Lifetimes of charmed mesons deviate hugely from each other and charm is not really heavy => does it make any sense to apply the HQE?

Our approach:

NLO -QCD
Matrix elements

D-meson lifetimes within the heavy quark expansion AL(Durham U., IPPP), Thomas Rauh (Munich, Tech. U.) Phys.Rev. D88 (2013) 034004 arXiv:1305.3588 [hep-ph]

Dimension-six matrix elements for meson mixing and lifetimes from sum rules
M. Kirk, AL, T. Rauh (Durham U. \& Durham U., IPPP)

JHEP 1712 (2017) 068 arXiv:1711.02100 [hep-ph]

- HQE seems also to work for lifetimes of charmed mesons!
- Confirm sum rule results with lattice/ do higher orders in HQE - Investigate charmed baryon lifetimes

CP violation in mixing and gamma

Mixing: $x_{D}^{\text {Exp. }}=(0.32 \pm 0.14) \cdot 10^{-2} y_{D}^{\text {Exp. }}=0.69_{-0.07}^{+0.06} \cdot 10^{-2}$
Try to calculate like in the B_{s}^{0} system:

$$
\begin{aligned}
y_{D}^{\mathrm{HQE}} & \leq\left|\Gamma_{12}^{D}\right| \tau_{D} \\
\Gamma_{12}^{D} & =-\left(\lambda_{s}^{2} \Gamma_{12}^{s s}+2 \lambda_{s} \lambda_{s} \Gamma_{12}^{s d}+\lambda_{s}^{d} \Gamma_{12}^{d d}\right)
\end{aligned}
$$

Figure 1: Contributions to Γ_{12} from operators of dimension $6(D=6)$. The leading order QCD diagram is shown in the left panel, an example for α_{s} corrections is shown in the right panel.

CP violation in mixing and gamma

Huge GIM cancellations in mixing and rare decays - not in lifetimes!
Consider only the first term:

$$
y_{D}^{\mathrm{HQE}} \neq \lambda_{s}^{2} \Gamma_{12}^{s s} \tau_{D}=3.7 \cdot 10^{-2} \approx 5.6 y_{D}^{\mathrm{Exp}}
$$

Do the full expression (use CKM unitarity)

$$
y_{D}^{\mathrm{HQE}} \approx \lambda_{s}^{2}\left(\Gamma_{12}^{s s}-2 \Gamma_{12}^{s d}-\Gamma_{12}^{d d}\right) \approx 1.7 \cdot 10^{-4} y_{D}^{\mathrm{Exp}}
$$

HQE itself gives not small numbers, but extremely effective GIM cancellation similar effects in penguin induced charm decays

GIM is overshadowing everything

What could have gone wrong in the HQE for D-mixing?

1. GIM mechanism less effective in higher orders in the HQE

Georgi 1992
Ohl, Ricciardi, Simmons 1993
Bigi, Uraltsev 2000
Bobrowski, Riedl, Rohrwild, AL 2010
2. Small (20\%) duality violations that have no/tiny GIM cancellations

$$
\begin{aligned}
& \Gamma_{12}^{s s} \rightarrow \Gamma_{12}^{s s}\left(1+\delta^{s s}\right) \\
& \Gamma_{12}^{s d} \rightarrow \Gamma_{12}^{s d}\left(1+\delta^{s d}\right), \\
& \Gamma_{12}^{d d} \rightarrow \Gamma_{12}^{d d}\left(1+\delta^{d d}\right),
\end{aligned}
$$

20% of duality violation is sufficient to explain D-mixing!

3. ?Consider different scales for the 3 different contributions? Partial lifting of GIM
4. HQE simply does not converge at all in the Charm-system \rightarrow BUT: lifetimes one has to use different approaches

Heavy Quark Expansion for D mesons

 ad 1. $D o D=9$ and $D=12$ calculationHow Large Can the SM Contribution to CP Violation in $D^{0}-\bar{D}^{0}$ Mixing Be?
M. Bobrowski (Regensburg U.), A. Lenz (Dortmund U. \& Regensburg U.), J. Riedl (Regensburg U.), J. Rohrwild (Regensburg U. \& RWTH Aachen U.). Published in JHEP 1003 (2010) 009 DO-TH-10-04, TTK-10-2 DOI: 10.1007/JHEP03(2010)009 e-Print: arXiv:1002.4794 [hep-ph] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU). | Harvmac | EndNote ADS Abstract Service
Detailed record - Cited by 112 records
Im (Gamma_12/M_12) up to 0.01!

ad 2. Try other approaches/to do a non-perturbative calculation

Falk, Grossman, Ligeti, Petrov
Phys.Rev. D65 (2002) 054034 Cited by 276 records
Falk, Grossman, Ligeti, Nir, Petrov
Phys.Rev. D69 (2004) 114021 Cited by 231 records

```
Multiple-channel generalization of Lellouch-Luscher formula
Maxwell T. Hansen, Stephen R. Sharpe (Washington U., Seattle). Apr 2012. 15 pp
Published in Phys.Rev. D86 (2012) 016007
DOI: 10.1103/PhysRevD.86.016007
e-Print: arXiv:1204.0826 [hep-lat] | PDF
    References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
    ADS Abstract Service; OSTI.gov Server
Detailed record - Cited by }165\mathrm{ records 100+
```


D meson mixing as an inverse problem

Hsiang-Nan Li, Hiroyuki Umeeda (Taiwan, Inst. Phys.), Fanrong Xu (Jinan U.), Fu-Sheng Yu (Lanzhou U.).
e-Print: arXiv:2001.04079 [hep-ph] | PDF
Dispersive and Absorptive CP Violation in $D^{0}-D^{0}$ Mixing
Alexander L. Kagan (Cincinnati U.), Luca Silvestrini (CERN \& INFN, Rome). Ja CERN-TH-2020-011
e-Print: arXiv:2001.07207 [hep-ph] | PDF
ad 3. Analysis in progress
ad 4. Confirm other charm lifetimes, in particular charmed baryons

Delta A_CP and friends

- Mixing induced CPV in charm IIIII I
- B $->\mathrm{K}^{*}$) mu mu and friends: IIII
- Gamma below 1\% III
- A_CP (D_0-> K+K-), A CP (D_0-> pi +pi-) III
- Sort out penguin pollution for beta, beta_s II
- B-> 3 bodies II
- epsilon'/epsilon -> relation to charm due to SU(2)_L II
- A_CP (D_0-> K_S K_S), A_CP (D_0-> K* K_S) II
- A_CP in rare charm decays D-> pi (pi) mu mu.... II
- b-> c \bar\{c\} $s->$ non-leptonic (lifetimes)
- A_CP in c-> u gamma, Lambda_c ->p gamma
- S-f in b->s qq transitions
- A_SL

Delta A CP and friends

Due to lack of time, just three comments:

1) Experíment $=10$ tímes naive $S M$

e.g. nice overview + references in Nierste 2003.01788

2) BSM explanations difficult because of strong Dmixing constraints, but not impossible
e.g.
and many more
$\Delta A_{C P}$ within the Standard Model and beyond
Mikael Chala, Alexander Lenz, Aleksey V. Rusov, Jakub Scholtz (Durham U., IPPP). Published in JHEP 1907 (2019) 161
IPPP/19/25
DOI: 10.1007/JHEP07(2019)161
e-Print: arXiv:1903.10490 [hep-ph] | PDF
3) Try to measure more precise and control channels

What-to do

- Stay healthy and in good mood!

- Continue to improve precision in gamma, beta, beta_s, Delta A_CP, (including control channels)
- Try to measure CPV in mixing: D_0, B_d, B_s
- Continue to improve precision in tau(B_s), charm lifetimes, Delta Gamma_d
- Study also CPV observables in b -> s II and b-> dII
- Study CPV in rare charm decays

END

