

1

CP violation in beauty and charm at Upgrade II

Roberta Cardinale on behalf of the LHCb Collaboration

University of Genova and INFN Genova

5th Workshop on LHCb Upgrade II - 30 March - 1 April 2020

Roberta Cardinale 5th Workshop on LHCb Upgrade II - 30 March - 1 April 2020

Introduction

- SM picture accounts for wide range of measured CP observables
- But there is still room for NP!
- More and more precise measurements are needed to reveal possible inconsistencies
- Majority of measurements are still statistically limited after Run2
- We will take advantage of the HL-LHC era to produce a very precise picture of the physics of flavour

All the expected sensitivity for Phase 2 upgrade are taken from

arXiv.1808.08865

CKM angle γ

- ${\ensuremath{\, \rm o}}$ Measurement of γ is crucial since it is still the least well-known UT angle
- Only CP-violating parameter that can be measured at the tree-level alone providing a good test for the SM (assuming no NP in tree-level decays [PRD92 (2015) 033002])
- Theoretically clean: $\delta^{\mathrm{th}}_\gamma/\gamma < \mathcal{O}(10^{-7})$ [JHEP 1401 (2014) 051]
- Comparing tree-level with loop-level determination to get signs of NP Loop-level

• Direct measurement $\gamma = (72.1^{+5.4}_{-5.7})^{\circ}$

• Indirect measurement (CKM fitter) $\gamma = (65.80^{+0.94}_{-1.29})^{\circ}$

Status of γ measurements at LHCb

$3 \,\mathrm{fb}^{-1}$ Run1 data + $2 \,\mathrm{fb}^{-1}$ Run2 data (2015-2016)

not yet included in LHCb combination [LHCb-CONF-2018-002]

		$B^+ \rightarrow DK^+$	$B^+ \rightarrow D\pi^+$	$B^0 \rightarrow DK^{*0}$	$B^+ \rightarrow DK^{*+}$	$B^+ \rightarrow DK^+\pi^-\pi^+$	$B^+ \rightarrow D^*K^+$
GLW	h^+h^-	PLB777 (PRD93 (16) 112018	JHEP17(17)156	PRD92(15)112005	PLB777(18)16
				JHEP08(19)41			
	$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	PLB760 (1	6) 117	JHEP08(19)41	JHEP17(17)156		
	$h^{+}h^{-}\pi^{0}$	PRD91(25)	112014				
ADS	$K^{\pm}\pi^{\mp}$	PLB760 (1	6) 117	JHEP08(19)41	JHEP17(17)156	PRD92(15)112005	
	$K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	PLB760 (1	6) 117	JHEP08(19)41	JHEP17(17)156		
	$K^{\pm}\pi^{\mp}\pi^{0}$	PRD91(25)	112014				
GGSZ	$K^0_s h^+ h^-$	JHEP10(14)97		JHEP08(16)137			
		JHEP08(18)176		JHEP06(16)131			
GLS	$K_{s}^{0}K^{+}\pi^{-}$	PLB733(14)36					
Time dependent		$B_s^0 \to D_s^{\pm} K^{\pm}$ [JHEP03(18)59] and $B^0 \to D^{\pm} \pi^{\pm}$ [JHEP06(18)84]					

- Different modes as a consistency check
- Complementary measurements: different challenges and different source of systematic uncertainties

The LHCb combination [LHCb-CONF-2018-002]

- Combination using $B^+ \rightarrow D^{(*)} K^{(*)+}$ $B^0 \rightarrow DK^{*0}, B^0 \rightarrow D^{\mp}\pi^{\pm}$ and $B^0_s \to D^{\mp}_s K^{\pm}$ decays in a maximum likelihood fit
- Most precise determination of γ 0 by single experiment

 $\gamma = (74.0^{+5.0}_{-5.8})^{\circ}$

- In agreement with world 0 averages
- Target precision with Run2 data: $\sigma(\gamma) = 4^{\circ}$

5th Workshop on LHCb Upgrade II - 30 March - 1 April 2020 Roberta Cardinale

- Statistically limited
- Dominant systematic uncertainties expected to scale with statistics
 - Instrumentation asymmetries (calibration samples)
 - Background contributions (studies with larger sample)

- Statistically limited
- Precision of external charm inputs
 - Current syst. due to CLEO inputs $\sim 2^{\circ}$
 - Future datasets at BESIII crucial
- Dalitz efficiency (data/simulation agreement, fast simulation techniques)

- ТD
 - Syst. Unc. from decay time acceptance and resolution and from calibration of flavour tagging
 - Expected to scale with statistics due to the data-driven methods

Roberta Cardinale 5th Workshop on LHCb Upgrade II - 30 March - 1 April 2020

Upgrade2 γ **prospects**

- Improvements in the detector will make new modes entering the game
 - Improvements in the electromagnetic calorimeter ECAL (granularity and energy resolution)
 - ADS/GLW and GGSZ with modes with an additional π^0 in the final state (hh $\pi^0,\,K^0_s\pi\pi\pi^0)$ or D^{*0}
 - Improvements in low-momentum tracking with addition of magnet-side stations (soft track reconstruction, removal of ghosts)
 - Reduction in the VELO material: improve vertex resolution
 - Multi body decays $(D \rightarrow 4h)$

Upgrade2 γ **prospects**

Status of $\sin 2\beta$

- Accessed via interference in B⁰ mixing and decay
- Golden channel: $B^0 \rightarrow J/\psi K_s^0$
- LHCb measurements
 - $B^0 \to J/\psi K_s^0$ (Run1) [PRL115(2015)031601]
 - $B^0 \to D^+ D^-$ (Run1) [PRL117(2016)261801]
 - $B^0 \to \psi(2S)K_s^0$, $B^0 \to J/\psi(e^+e^-)K_s^0$ (Run1) [JHEP11(2017)170]
 - $B^0 \rightarrow D^{*\pm}D^{\mp}$ (Run1+Run2)

arXiv:1912.03727

Prospects for $\sin 2\beta$

- Systematic uncertainties: tag asymmetries in bkg, flavour tagging calibration, decay-time efficiency
- Not expected to be limiting since control samples will scale with increased data
- Need clearly a good flavour tagging performance
- Good control of K⁰-K
 ⁰ CP violation and nuclear cross-section asymmetry
- Control of penguin pollution

- $\sigma_{stat} = 0.003 \text{ at } 300 \, {\rm fb}^{-1}$
- Belle II at 50 ab^{-1} : $\sigma_{stat} = 0.005$

CP violation in $B_{(s)}$ mixing and decay:

- CP-violating phase arising from interference between mixing and decay
- Precisely predicted by the SM
- Golden channel: $B_s^0 \rightarrow J/\psi \phi$
- Exploited not only by LHCb but also by ATLAS and CMS
- Measurement in other channels by LHCb to improve precision and as consistency check
 - $B^0_s \to J/\psi\phi$ [EPJC79(2019)706] (2015+2016)
 - $B_s^0 \to J/\psi \pi^+ \pi^-$ [PLB797(2019)134789] (2015+2016)
 - $B^0_s \rightarrow D_s D_s$ [PRL113(2014)211801]
 - $B^0_s \rightarrow \psi(2S)\phi$ [PLB762(2016)253]
 - $B_s^0 \rightarrow J/\psi K K$ high mass [JHEP08(2017)037]

- Indirect measurement: $\phi_s = -36.4 \pm 1.2$
- Experimental uncertainty ≫ uncertainty on indirect determination

Run2 data results [EPJC79(2019)706, PLB797(2019)134789]

- Flavour-tagged decay-time dependent angular analysis
- Flavour tagging and excellent time resolution are a key ingredients
- Simultaneous fit to the decay time and three helicity angles in 6 m(K⁺K⁻) bins and in m(π⁺π⁻)
- Per-candidate decay time error calibrated using prompt J/\u03c6 control sample
- Studies of variation of efficiency with angular variables and decay-time acceptance are fundamental (data-driven approach)
- Resonance modelling of the π⁺π⁻ spectrum is giving one of the largest systematics

Combination of LHCb results

$$\phi_s = -0.042 \pm 0.025 \text{ rad} \\ |\lambda| = 0.993 \pm 0.010 \\ \Gamma_s = 0.6563 \pm 0.0021 \text{ ps}^{-1} \\ \Delta \Gamma_s = 0.0813 \pm 0.0048 \text{ ps}^{-1} \\ \end{bmatrix}$$

- ϕ_s consistent with SM
- λ consistent with no direct CPV

Prospects for U2

- Fundamental to maintain (or improve) current detector performance: vertex position resolution and decay time resolution for high pile-up conditions
- Improve flavour-tagging (sensitive to event multiplicity)
- Include new modes (as it has been already done for $B_s^0 \to D_s^+ D_s^-$ and $B^0 \to D^+ D^-$ (which will benefit from the enhanced trigger efficiency for hadrons) but also $B_s^0 \to J/\psi(ee)\phi$ and $B_s^0 \to J/\psi \eta^{(\prime)}$ involving neutrals with improved calorimeter performance
- Control of penguin pollution using SU(3) flavour (expected to be $\lesssim 1.5 \,\mathrm{mrad}$) using $B^0 \to J/\psi \pi^0$ and $B^0_s \to J/\psi K^0_s$ (already studied) from Belle II and improving ECAL capabilities

$\phi_s^{ss\bar{s}}$ and ϕ_s^{dds} from charmless

- $B_s^0 \rightarrow \phi \phi$: $\bar{b} \rightarrow s\bar{s}s$ gluonic penguin: excellent probe of physics BSM
- Measurement using 5 fb⁻¹ (Run1 + 2015 + 2016)
- Statistically limited
- Main syst. unc.: angular acceptance determined from simulations

- $B_s^0 \to (K^+\pi^-)(K^+\pi^-): \bar{b} \to d\bar{d}s$
- Measurement using Run1 data
- Comparable statistical and syst. unc.
- Main systematic uncertainties:
 - Acceptance determination from simulations

Prospects for $\phi_s^{ss\bar{s}}$ and $\phi_s^{d\bar{d}s}$

- $\phi_s^{ss\bar{s}}$ statistically limites with full U2 data sample
- Syst. Unc. expected to scale with statistics
- Treatment of acceptance: rapid simulation due to large samples needed
- For $\phi_s^{d\bar{d}s}$, modelling of the $K\pi$ spectrum irriducible $(\sigma_{syst} \sim 0.03 \text{ rad})$

Decey mode	$\sigma(\text{stat.}) \text{ [rad]}$				
Decay mode	$3 {\rm ~fb^{-1}}$	23 fb^{-1}	$50~{\rm fb}^{-1}$	$300~{\rm fb}^{-1}$	
$B_s^0 o \phi \phi$	0.154	0.039	0.026	0.011	
$B_s^0 \to (K^+\pi^-)(K^-\pi^+)$ (inclusive)	0.129	0.033	0.022	0.009	
$B_s^0 \to K^*(892)^0 \overline{K^*}(892)^0$	_	0.127	0.086	0.035	
Roberta Cardinale 5th Workshop on LHCb Upgrade II - 30 March - 1 April 2020				16	

CP violation in three-body B decays $B^+ \rightarrow \pi^+ \pi^+ \pi^-$

- Interest due to the observation of large CPV in localised regions of the phase space [PRD90 (2014) 112004] not only associated with a resonance
- Rescattering process can generate additional strong phase difference
- Several quasi-two-body amplitudes interfering in multi-body final state decays with access to strong and weak phases
- Extraction of CKM parameters by combining amplitude measurements using isospin partner decays
- Amplitude analysis of $B^+ \rightarrow \pi^+ K^+ K^-$ [PRL123(2019)231802] and $B^+ \rightarrow \pi^+ \pi^+ \pi^-$ [PRD101(2020)012006]
- ${\small \bigcirc}~~ {\rm Observed}~{\rm CPV}$ in rescattering in $B^+ \to \pi^+ K^+ K^-$
- $\bullet \ \ {\rm For} \ B^+ \to \pi^+ K^+ K^-$
 - Significant CP at low $m(\pi^+\pi^-)$
 - Large CPV in the $f_s(1270)$ region (tensor resonance)
 - Observed CPV in the interference between S and P interference

 $n^{2}(\pi^{+}\pi^{-})_{\rm high}$ [GeV²/ c^{4} LHCb (c) 25 E 20 -0.210 -0.4-0.6 -0.8 $m^2(\pi^*\pi^-)$ [GeV²/c⁴] $B^+ \rightarrow \pi^+ K^+ K^$ $n^{2}(\mathrm{K}^{+}\pi^{-}) [\mathrm{GeV}^{2}/c^{4}]$ LHCb (d) 10 20 $m^2(K^+K^-)$ [GeV²/c⁴]

Status and prospects

- Measurement of A_{CP} are currently statistically limited
- Current dominant systematic uncertainties
 - Parametrisation of signal and backgrounds
 - Modelling of efficiency on the Dalitz phase space
 - Amplitude model (Resonance fixed parameters and alternative models)
- $\bullet \ B \to h h h$ measurement will become systematically limited
 - Parametrisation of signal and backgrounds will scale with integrated luminosity
 - Modelling of efficiency on the Dalitz phase space: larger simulation samples, more uniform efficiencies
 - Amplitude model will not scale with data

CP violation in charmless

- CP violation studies in $B^0 \to \pi^+\pi^-$ and $B^0_s \to K^+K^-$: constraints on γ and $-2\beta_s$ [JHEP10(2013)183, PRD98(2018) 032004]
- Determination of the angle α using $B \to \pi\pi$, $B \to \rho\rho$, $B \to \pi^+\pi^-\pi^0$
 - CP measurements in $B^0 \rightarrow \pi^+\pi^-$ will be dominated by LHCb
 - Possibility to study $B^+ \to \pi^+ \pi^0$ (as done for the $B^+ \to K^+ \pi^0$) with the improvements in the calorimeter system
 - $B^0 \rightarrow \rho^0 \rho^0$ study of CP violating parameters will be performed at LHCb (Time integrated angular analysis performed with Run1 data [PLB747 (2015) 468])
 - $B \to \pi^+ \pi^- \pi^0$ with the improvements in the calorimeter system but need tagged time-dependent analysis and knowledge of the resonant substructures
 - Other golden modes more criticals $(B^0 \to \pi^0 \pi^0, B^0 \to rho^+ \rho^-)$
- Belle II will dominate α measurement
- Loop-dominated modes will become interesting due to the more efficient 0 hadron trigger and improved ECAL
 - Decay-time-dependent flavour-tagged Dalitz analysis of $B_s^0 \to K_s^0 hh$ decays will be possible in the U2 thanks to the large yields available (Time integrated analysis with Run1 data [PRL120(2018) 261801]) 19

Roberta Cardinale 5th Workshop on LHCb Upgrade II - 30 March - 1 April 2020

CP violation in b baryon decays

- LHCb is the only experiment to have access to b-baryon decays
- Measurement program of CPV is on-going
 - $\Lambda^0_b
 ightarrow K^0_s p\pi$ [JHEP04(2014)087]
 - $\Lambda^0_b
 ightarrow \Lambda hh$ [JHEP05(2016)081]
 - $\Lambda_b^0 \rightarrow ph$ [PLB787(2018)182]
 - $\Lambda_b^0 \rightarrow D^0 p K$ [PRD89(2014)032001]
 - $\Lambda_b^0 \rightarrow phhh$ [EPJC79(2019)745, Nature Phys12(2017)341, JHEP08(2018)039, 1912.10741] with the first observation of P violation at 5.5σ integrated over phase space and CP violation at 2.9σ in regions of phase space
- Very large yields open to new b-baryons and new decay modes
- Not only b-baryons but also charm baryons (Ξ_c^+)
- Main experimental issues
 - Particle-antiparticle production asymmetries
 - Detector reconstruction asymmetries: difficult to calibrate different interactions baryons/antibaryons with material
- Use quantities not affected by experimental effects ($\Delta A_{\rm C}$, TPA, ET, ...) Roberta Cardinale 5th Workshop on LHCb Upgrade II - 30 March - 1 April 2020 20

Charm physics

- Motivations: unique access to mixing and CPV in the up-type quark sector
- Taking advantage of the enourmous ($\sim 10\,\rm MHz)$ production rate of charm mesons and baryons expected in the U2
- Fully software trigger and use of real-time analysis is fundamental
- First observation of CPV in charm (5.3 σ) using Run1+Run2 data! [PRL122 (2019) 211803]
 - $\Delta A_{\rm CP} = A_{CP}(K^+K^-) A_{\rm CP}(\pi^+\pi^-) = (-1.54 \pm 0.29) \times 10^{-3}$
 - Cancellation of both production and detection asymmetries!
- Extended program to measure CP asymmetries in many different channels
- Exploit both direct CP and mixing and time-dependent measurements

Direct CP

Direct CPV in $D \rightarrow K^-K^+$ and $D \rightarrow \pi^-\pi^+$

- $\bullet\,$ Enhanced sensitivity to direct CPV through a measurement of $\Delta A_{\rm CP}$
- Disentangle the two contributions measuring the two individual asymmetries $A_{CP}(K^-K^+)$ and $A_{CP}(\pi^-\pi^+)$
 - Measurement of $A_{CP}(K^-K^+)$ with Run1 data [PLB767(2017)177]
 - Asymmetries subtracted using control samples
 - Statistical precision reduced to the kinematic weighting due to the different topologies of the decays
 - No systematic uncertainties expected to have irriducible contributions but need a precise control of the detection asymmetries (K^0 asymmetry due to the knowledge of the material budget)

Sample (\mathcal{L})	Tag	Yield	Yield	$\sigma(\Delta A_{CP})$	$\sigma(A_{CP}(hh))$
		$D^0 \rightarrow K^- K^+$	$D^0 \rightarrow \pi^- \pi^+$	[%]	[%]
Run 1–2 (9 fb ^{-1})	Prompt	52M	17M	0.03	0.07
Run 1–3 (23 fb ^{-1})	Prompt	280M	94M	0.013	0.03
Run 1–4 (50 fb ^{-1})	Prompt	1G	305M	0.007	0.015
Run 1–5 (300 fb ⁻¹)	Prompt	4.9G	1.6G	0.003	0.007

Direct CPV

- Other channels which can gain from the improved downstream tracking, calorimetry and trigger in Upgrade2
 - CPV enhanced to the percent level such as in $D^0 \to K^0_s K^0_s$ [JHEP 1811 (2018) 048] and $D^0 \to K^0_s K^{*0}$ [PRD93(2016)052018]
 - $D_s^+ \to K_s^0 \pi^+$, $D^+ \to K_s^0 K^+$, $D^+ \to \phi \pi^+$ [PRL122(2019)191803]
 - Decays with neutrals: $D^+ \to \eta^{'} \pi^+$, $D^+_s \to \eta^{'} \pi^+$ [PLB771(2017)21] or radiative decays $D^0 \to \phi \gamma$ and $D^0 \to \rho \gamma$
 - Quasi-two body modes such as $D^0 \to K^*K$, $D_s \to \rho K$: overlapping amplitudes in $D \to hhh$ decays with varyong strong phase
 - $D^0 \rightarrow h^+ h^- h^+ h^-$ using both T-odd asymmetries [JHEP10(2014)005], energy test [PLB769(2017)345] or model-dependent analysis
 - Charmed baryons

	Current Best	LHCb U2 ($300 { m fb}^{-1}$)		
$A_{\rm CP}(D^0 \to K^0_s K^0_s)$	Belle	15	2.8	
$A_{\rm CP}(D^0 \to K^0_s K^{*0})$	LHCb $(9 \mathrm{fb}^{-1})$	4.0	1.5	
$A_{\rm CP}(D^+ \to \pi^+ \pi^0)$	Belle	12.6	1.7	
$A_{\rm CP}(D^+ \to \phi \pi^+)$	LHCb $(4.8 {\rm fb}^{-1})$	0.49	0.06	
$A_{\rm CP}(D^+ \to K^0_s K^+)$	LHCb $(6.8 {\rm fb}^{-1})$	0.76	0.12	
$A_{\rm CP}(D^+ \to K_s^0 \pi^+)$	LHCb $(6.8 {\rm fb}^{-1})$	1.8	0.32	
$A_{\rm CP}(D^+ \to \eta' \pi^+)$	LHCb $(3 \mathrm{fb}^{-1})$	8.9	0.35	
Roberta Cardinale 5th Workshop on LHCb Upgrade II - 30 March - 1 April 2020				

Mixing and time-dependent CPV

A_{Γ}

- Time-dependent CP of D^0 mesons into CP eigenstates $(D^0 \rightarrow K^+ K^- \text{ and } D^0 \rightarrow \pi^+ \pi^-)$
- $A_{\rm CP} \simeq A_{CP}^{\rm dir} \frac{t}{\tau_D} A_{\Gamma}$
- Experimentally robust
 - Self-conjugate final state: detection asymmetry only from tagging π^+ or μ^+
 - Sensitive to detector asymmetries through correlations between momentum and proper decay time
 - Large CF $D^0 \to K^- \pi^+$ control sample
- Measurement using 5.4 fb⁻¹ [PRD101 (2020) 012005]

Sample (\mathcal{L})	Tag	Yield K^+K^-	$\sigma(A_{\Gamma})$	Yield $\pi^+\pi^-$	$\sigma(A_{\Gamma})$
Run 1–2 (9 fb ⁻¹)	Prompt	60M	0.013%	18M	0.024%
Run 1–3 (23 fb ⁻¹)	Prompt	310M	0.0056%	92M	0.0104~%
Run 1–4 (50 fb ⁻¹)	Prompt	793M	0.0035%	236M	0.0065~%
Run 1–5 (300 fb ⁻¹)	Prompt	5.3G	0.0014%	1.6G	0.0025~%

- SM predictions $A_{\Gamma}^{\rm SM} \approx 0.3 \times 10^{-4}$
- Need to save 50 billion CF $D^0 \rightarrow K^- \pi^+$ control decays

Roberta Cardinale 5th Workshop on LHCb Upgrade II - 30 March - 1 April 2020

WS/RS ratio

- Comparison of decay-time-dependent ratios of favoured (RS) wrt suppressed (WS) $R^{\pm}(t) = \Gamma_{WS}(t)/\Gamma_{RS}(t)$ for D^0 and \bar{D}^0
- $\bullet~$ Related to the mixing parameters x and y and the CP-violation parameters |q/p| and $\phi~$
- LHCb measurement for $D^0 o K^- \pi^+$ (Run1 + 2015 + 2016) [PRD 97 (2018) 031101]
- Similar analysis for $D^0 \to K^+ \pi^- \pi^+ \pi^-$
- Phase-space integrated measurement [PRL 116 (2016) 241801]
- Enhanced sensitivity thanks to the variation of strong phases in the phase space (but strong phases have to be determined)
- Magnet-side stations will increase flavour-tagged charm sample (from the charge of the low-momentum pion)
- Syst. Unc. estimated using control samples, no irreducible contributions

Conclusions

- For the beauty sector: great progress in probing SM, but considerable space for NP remains
- $\bullet\,$ LHCb will drive tree-level CPV γ precision through Phase 2 to sub-degree precision
- ϕ_s will be measured with a precision of $3\,\mathrm{mrad}:$ good control of penguin pollution
- $\bullet\,$ Test of CPV in charm has just started: expected 10^{-5} precision
- Improve/maintain detector performance (vertex/time resolution, flavour tagging/PID/...)
- Use high-yield control channels to control efficiencies

Spare Slides