

Performance evaluation of U2 options

U2 workshop March 30, 2020 Laurent Dufour, Tim Evans, Robbert Geertsema, Misha Mikhashenko & Mark Williams

Motivation

The vast increase in luminosity with the upgrade-II is particularly challenging for the vertex detector, which has the highest track density. Reasoning from **first principles** and toys **several options** for the Upgrade-II vertex detector have been proposed (foil, timing, pitch, barrel).

Do these options allow to make the Upgrade-II **physics case** a reality?

Goal of this talk: motivate, based on the impact on the chain of event reconstruction (and as realistic as possible), two of the attractive R&D paths considered for the Upgrade-II vertex detector.

Using the full simulation, tried to evaluate the impact of **timing** and a **much thinner foil** (~ no foil) on four stages of the event reconstruction. Do so by using the Upgrade-I detector, adding 50ps timing¹ and/or removing foil.

Disclaimer These parameters are considered as reasonable options, but it does not mean we propose this detector as a concrete option at this stage. The goal is to **motivate R&D**, not to focus on the **implementation**.

Gains in the pattern recognition

Without foil: fewer scatters (also from layer to layer). Windows can be tighter, reducing the ghost rate for the same efficiency.

With a **timestamp** on each **hit**, can reject outof-time hit combinations, directly reducing the ghost rate. Run with looser windows to increase efficiency.

Gains in the pattern recognition

	Foil thickness	Per-hit timing	ε velo [%]	<u> Elong [%]</u>	Р _{GHOST} [%]
Upgrade-I (reference)	I 50µm		98. I	99.I	0.5
Upgrade-II ↓	I50μm	×	96.6	98.1	3.2
	I 50µm	50ps	97.2	98.7	1.1
	0µm	×	97.8	98.9	2.3
	0µm	50ps	98.0	99.2	1.0

Remember: this is an efficiency *per track*!

Effect of search windows

Variation less drastic for 4D tracking

Primary vertex reconstruction

Run-3 PV algorithm: histogramming on the beam line

Primary vertex reconstruction

(can you distinguish the ~42 peaks?)

Impact on physics

Should you care about merging PVs?

If two PVs sit close to one another and get merged, the impact on the resolution is dramatic (even for nTracks > 25 in the PV)

Primary vertex reconstruction

Considerable recovery seen with timing, although not on the level of U-1 yet. Tuning of algorithm still a degree of freedom.

U2 workshop

In the main trigger selections up to now, charm and beauty decays are selected through high-pT tracks with a significant **impact parameter** with respect to **any primary vertex**.

With the high multiplicity of primary vertices, the sheer chance of a track pointing to another PV increases - a **displaced** track can appear **prompt-like** (esp. given resolutions)!

Is the impact parameter still a good discriminant?

Impact parameter discrimination

Foil: discrimination improved by better IP resolution

Timing: Can limit the number of PVs under consideration for the minimum IP requirement

Impact parameter discrimination

Combining tracks

Typical selection After selecting displaced tracks with a reasonable pT, combine them to try and find the signal candidate.

With the increased **track density**, more **combinatorial background** is expected ("event mixing"). Is a ~20ps track resolution already helpful to reject this background?

Combining tracks

Generated signal $B_s \rightarrow D_{s^+} \pi^+$ Monte Carlo, samples artificially pure (every event contains signal!). Try and reconstruct the D_{s^+} .

Already here a clear increase in combinatorial background visible, the pertrack time significantly helps recovering. Particularly helpful in trigger!

U2 workshop

Beyond the Upgrade-I geometry

Discussed the timing and foil reduction, but studies shouldn't stop here: need to do studies out-of-the-box (literally).

In parallel, a **parametric simulation** was developed for the VP, tuned to reproduce spectra and resolutions from full simulation

Will be used for exploring different sensor radii and barrel layers

Take-home message Moving **away from the beam** drastically reduces radiation requirements, but need better spatial requirements to **compensate** (making the foil removal even more important)

Conclusions

Studies on full simulation underline the added value of a **time per hit** in all considered phases of the event reconstruction.

While a step forward, certainly not finished: In the end, would combine results from parametric simulation to **motivate** the geometric **design**, which is then tested in al detail using the full simulation.

All details of these studies are planned to be available in the **Upgrade-II VP FTDR supporting document**, to be circulated in ~2 weeks from now.

Performance evaluation of U2 options

U2 workshop March 30, 2020 Laurent Dufour, Tim Evans, Robbert Geertsema, Misha Mikhashenko & Mark Williams

CPU time for PR algorithm

Table 1: Comparison of the performance of tracking algorithms between Upgrade-I and Upgrade-II conditions. Shown are the CPU time used both per event and per track, track-finding efficiencies and the ghost rate. The Upgrade-I baseline includes raw bank decoding and clustering within the tracking algorithm.

Conditions	n_{tracks}	$t/\mathrm{event}\left[\mu\mathrm{s}\right]$	$t/\mathrm{track}\left[\mu\mathrm{s}\right]$	$\varepsilon_{\rm velo}[\%]$	$\varepsilon_{\rm long} [\%]$	$P_{\rm ghost}$ [%]				
Upgrade-I baseline										
U-I	215	314	1.46	98.1	99.1	0.5				
U-II $(150 \mu m \text{ foil})$	1600	5780	3.42	95.4	97.3	2.4				
U-II (no foil)	1090	5303	3.13	97.1	98.4	2.1				
Upgrade-II optimised										
U-I	215	244	1.10	97.6	98.9	0.4				
U-II $(150 \mu m \text{ foil})$	1600	1792	1.06	95.1	97.0	1.9				
U-II (no foil)	1090	1623	0.96	96.7	98.1	1.7				

Mis-association

