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Objectives

• Introduce the basics of Fourier analysis and the case of study (probing phonons 

in hBN using EELS);

• Apply Fourier analysis to the experimental and theoretical data;

• Understand what processes might have caused the differences between the

experimental and simulated data;

• Ultimate goal: Understand how Fourier analysis is used to validate theoretical

models with experimental data;
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Introduction…
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Fourier Analysis

The Fourier transforms are defined as:
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Direct Inverse
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Case of Study: What & Why?

Case of study: Probing phonons in hexagonal boron nitride (hBN) using electron 
energy loss spectroscopy (EELS) - R. J. Nicholls et. al. PRB 99 2019.

Phonons: Crystal lattice excitations. Why? To understand lattice Dynamics.

hBN: Most stable form of BN polymorphs, widely used in its 2D configuration. 

EELS: Beam of electrons impinges on a sample and the transmitted electrons’ 
energy is measured. Why? Allows us to study momentum depedence and
nanometer spatial resolution. 

DFT: Density functional theory is a powerful, widely spread method at the heart
of today’s computational physics research… and it is like a black box to us.
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Case of Study: Details
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Theory:
1. Scattering formalism is used to 

compute cross sections;

2. To simplify the problem some 
approximations are introduced;

3. Density functional perturbation
theory was used to compute the
phonon eigenvalues.
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Theory:
1. Scattering formalism is used to 

compute cross sections;

2. To simplify the problem some 
approximations are introduced;

3. Density functional perturbation
theory was used to compute the
phonon eigenvalues.

Experiment:
1. A transmission electron microscope

(STEM) was used to perform EELS;

2. The apparatus was callibrated no 
minimize electron damage;

3. No denoising or deconvolution
routines were used.



Validation…
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Learning The Tools
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Subtraction
+ IFT
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Learning The Tools
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It Works!



Uncertainty Principle
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Uncertainty Principle
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Cleaning the Signal…
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Raw Data
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General features of the data 

(R. J. Nicholls et. al. PRB 99 2019):

• Two independent peaks;

• Different broadening;

• Initial noise.



Cleaning the Experimental Data
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Cleaning the Experimental Data
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Cleaning the Experimental Data
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IFT

Looking at the noise:



Cleaning the Experimental Data
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It is noise…



Data Fits
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Experimental Simulated

Lorentzian Gaussian



Data Fits
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Experimental Simulated

Gaussian

Why the different fit?

Different couplings lead to 
different line widths.

Lorentzian



Smearing the Data…
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Convolution
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We start by convoluting the first peak with a Lorentzian. Why?

*

To broaden the peak. Produce a better fit to experimental data.

9 x Larger
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• We started by validating the Fourier analysis method with controllable examples;

• A frequency filter was applied to the experimental data, removing the noise and 

smoothing the results;

• Experimental and simulated data were fitted with different distributions 

indicating different line width regimes;

• The simulated data was broadened by means of a convolution with a Lorentzian

presenting good agreement with experimental data.

Overview
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