Physics Advanced Laboratory FOURIER ANALYSIS – GRAVITATIONAL WAVES

ANTÓNIO OLIVEIRA SOLANGE NUNES

Outline

- Description of the experiment;
- Fourier Analysis: main tool to analyze data from the experiment;
- Identifying and removing noise;
- Correlation analysis;
- Analysis in a selected window;
- Conclusions.

Gravitational Waves

Disturbances in the spacetime curvature;

- **Generated by the merger of** two black holes;
- \blacktriangleright Strain: \sim 10⁻²¹

Gravitational Waves: How can we "see" them?

LIGO - A GIGANTIC INTERFEROMETER

Fourier Analysis

- Tool for decomposing a signal into periodic components (sines and cosines) and recover it from those components.
- Allow us to decompose signal in components characterized by a different choice of frequencies, ex. noise in high frequencies.
- Signal x[n] is discrete, given only in N sampling times n∆t , over a period T: need to use Discrete Fourier Transform

$$
x(t) = \sum_{k=-\infty}^{\infty} y_k e^{i\frac{2\pi kt}{T}} \longrightarrow x[n] = \frac{1}{N} \sum_{k=0}^{N-1} e^{2\pi i \frac{kn}{N}} y[k]
$$

$$
y_k = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} e^{-i\frac{2\pi kt}{T}} x(t) dt \longrightarrow y[k] = \sum_{n=0}^{N-1} e^{-2\pi i \frac{kn}{N}} x[n]
$$

$$
i\frac{2\pi}{T}kt \to i\frac{2\pi}{N\Delta t}kn\Delta t \to 2\pi i\frac{kn}{N}
$$

Gravitational Waves: Theory vs Experiment

- Analysis of the correlation between theory (expected signal) and observation (actual signal)
- Analysis of the correlation between residue and observation

Gravitational Waves theory vs observation

Pearson correlation coefficient

$$
r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}
$$

Residues: difference between signal and theory 8

Residue varies too much in amplitude (contains more than noise)

Some correlation between residue and signal: where signal is not expected, actual signal could pure noise (ex: high frequencies)

Fourier Transforms: finding noise (raw windows)

Amplitude Spectral Density residue 250 theory signal $200 150 100 50 -$ 0 \mathbf{I} \mathbf{I} 100 200 Ω 300 400 500 freqs (Hz)

residue
signal Amplitude Spectral Density
 $\begin{array}{ccc}\n & \text{no} & \text{no} \\
\text{on} & \text{no} & \text{no} \\
\text{on} & \text{no} & \text{no}\n\end{array}$ Ω 200 250 300 350 400 450 500 550 600 residue 250 signal $200 150 100 50 -$ 0 20 60 80 $\overline{0}$ 40 100

Frequency (Hz)

Optimizing the extraction of noise

Procedure

- **Departing from crude estimates for the limits** of frequency window, search methodically for values that give the best fit for Residue = Signal
- ▶ For the cases where the fit is almost perfect (slope > 0.99 ; intercept ~ 0), find the larger window.

Optimizing the extraction of noise results \geq 250. signal \bar{P} 200 Correlation:

High frequencies window : 286 Hz - 398 Hz

0.874 0.891

Before and After

Mostly attenuation of spiky behavior in the signal

Residue vs Signal Before and after removing high frequency noise

Correlation: 0.354 $0.4 0.2 -$ Residue $0.0 -0.2$ $-0.4 0.0$ -1.0 -0.5 0.5 1.0 Hanford experimental signal

Filtered experimental signal

Low frequencies noise correlation residue/signal actually increases

high + low freq. filter, $r = 0.310$

Correlation Analysis

- \blacktriangleright 1, 2 & 8 low amplitudes, theory is almost zero
- ▶ 3 & 4 correlation decreases
- ▶ 5-high correlation
- ▶ 7 negative correlation; filtered has bigger correlation

Signal Without Noise in High Frequencies

Correlation Analysis

- Sometimes filtered data has bigger correlation than original data;
- Different behaviors for different windows;

▶ We could analyze the data in different windows…

Signal Without Noise in High Frequencies

Inspiral Fase Analysis 17

Data Evolution

Signal Without Selected Frequencies

Correlation Evolution

A New look at the Frequency Domain

Data Evolution

Signal Without Selected Frequencies Theory 1.0 Signal 0.5 Strain (10^{-21})
 $=$ 0.5
 $=$ 0.5 $-1.0 -$ 0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450 Time (s)

Modified Signal and Theory

Correlation Evolution

Lower Frequencies Reconstructed Signal and Theory For Window 25

Data Evolution

26

Time (s)

0.250 0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450

Correlation Evolution

Conclusions

▶ We were able to find a window of noise in the high frequency region.

 In low frequencies, we didn't consider any noise because what we isolated was weak and by using that filter the correlation between residue and signal increased.

- **Looking at the correlation plots we see that, by clearing the noise, not** all zones got better correlations, some even got a little worse.
- \blacktriangleright This can happen because this noise has some modulation and does not behave the same way along the signal.
- By looking at different regions of the signal, we can find new noise or regions were our model seems to not describe the signal very well.