EFTs: Bounding the systematic uncertainties of the Inverse Amplitude Method Felipe J. Llanes-Estrada

Univ. Complutense de Madrid,

In collaboration with A. Salas-Bernárdez, J. Escudero & J.A. Oller and long term, A. Dobado and R. L. Delgado

Presented at the Vth COMHEP, Dec.1st 2020

Felipe J. Llanes-Estrada

Error budget of the Inverse Amplitude Method 1 / 54

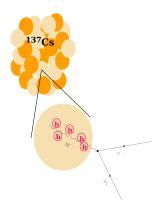
And the Higgs was found...

Explained the size of the atom and of all beautiful things

イロト イヨト イヨト

And the Higgs was found...

• Also, drag on the W explains slowness of β radioactive decay

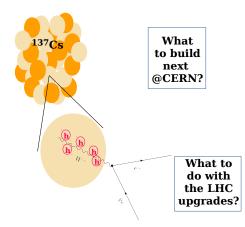


< E

Where in the big picture?

Basics of the IAM Dispersive formulation Where does this method fit? Uncertainty estimates from hadron physics Conclusions

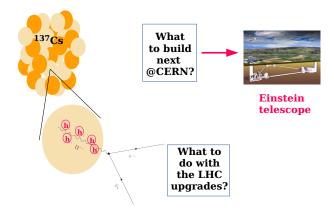
So what now?



イロト イヨト イヨト

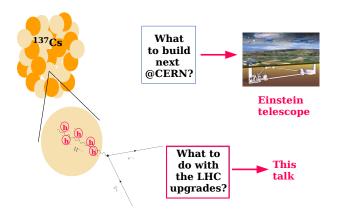
æ

FCC look up! High Energy physics w Gravitational Waves



イロト イヨト イヨト

Meanwhile, exploit the LHC



イロト イヨト イヨト

æ

Too many terms = too much noise

Maybe enough scientists with enough coefficients will find separation from SM...

http://notapipe.biz/quality-quantity-and-infinite-monkeys/

LHC is unique for Electroweak Symmetry Breaking Sector

Cut to the chase: Vector Boson Scattering

- $\vec{W_L} \simeq \vec{\omega}$ Goldstone bosons of symmetry breaking
- h additional scalar particle distinguished by symmetry breaking
- ► Relevant processes: $W_L W_L \rightarrow W_L W_L$, $W_L W_L \rightarrow (h)h$, $hh \rightarrow hh$, $W_L h \rightarrow W_L h$

(Under hypothesis of SU(2) isospin custodial symmetry)

R.L. Delgado, A. Dobado, FJLE and others, series of Complutense papers

イロト イポト イラト イラト

3

HEFT Lagrangian for electroweak symmetry breaking

Compact, TeV-scale seven-number version

$$\mathcal{L} = \frac{1}{2} \left(1 + 2a\frac{h}{v} + b\left(\frac{h}{v}\right)^2 \right) \partial_\mu \omega^a \partial^\mu \omega^b \left(\delta_{ab} + \frac{\omega^a \omega^b}{v^2} \right)$$

$$+ \frac{4a_4}{v^4} \partial_\mu \omega^a \partial_\nu \omega^a \partial^\mu \omega^b \partial^\nu \omega^b + \frac{4a_5}{v^4} \partial_\mu \omega^a \partial^\mu \omega^a \partial_\nu \omega^b \partial^\nu \omega^b$$

$$+ \frac{1}{2} \partial_\mu h \partial^\mu h + \frac{g}{v^4} (\partial_\mu h \partial^\mu h)^2$$

$$+ \frac{2d}{v^4} \partial_\mu h \partial^\mu h \partial_\nu \omega^a \partial^\nu \omega^a + \frac{2e}{v^4} \partial_\mu h \partial^\nu h \partial^\mu \omega^a \partial_\nu \omega^a.$$

R. L. Delgado, A. Dobado and FJLE, PRD 91, 075017 2015

< ロ > < 同 > < 三 > < 三 >

3

Derivative expansion (\simeq ChPT)

$$\mathcal{L} = \frac{1}{2} \left(1 + 2a\frac{h}{v} + b\left(\frac{h}{v}\right)^2 \right) \boxed{\partial_{\mu}\omega^a \partial^{\mu}\omega^b} \left(\delta_{ab} + \frac{\omega^a \omega^b}{v^2} \right)$$

$$+ \frac{4a_4}{v^4} \partial_{\mu}\omega^a \partial_{\nu}\omega^a \partial^{\mu}\omega^b \partial^{\nu}\omega^b + \frac{4a_5}{v^4} \boxed{\partial_{\mu}\omega^a \partial^{\mu}\omega^a \partial_{\nu}\omega^b \partial^{\nu}\omega^b}$$

$$+ \frac{1}{2} \partial_{\mu}h\partial^{\mu}h + \frac{g}{v^4} (\partial_{\mu}h\partial^{\mu}h)^2$$

$$+ \frac{2d}{v^4} \partial_{\mu}h\partial^{\mu}h \partial_{\nu}\omega^a \partial^{\nu}\omega^a + \frac{2e}{v^4} \partial_{\mu}h\partial^{\nu}h\partial^{\mu}\omega^a \partial_{\nu}\omega^a.$$

R. L. Delgado, A. Dobado and FJLE, PRD 91, 075017 2015

< ロ > < 同 > < 三 > < 三 >

æ

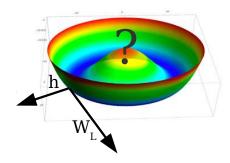
Note the different counting

- ► In SMEFT you would think $\partial_{\mu}\omega^{a}\partial^{\mu}\omega^{a}\partial_{\nu}\omega^{b}\partial^{\nu}\omega^{b}$ is of order 8
- In HEFT ω does not cost you a power, so this is NLO
- Needed for renormalization of loops of LO terms

R. L. Delgado, A. Dobado and FJLE, JHEP 02 (2014) 121; Also G. Buchalla et al. Phys.Lett.B 731 (2014) 80-86, etc.

・ 同 ト ・ ヨ ト ・ ヨ

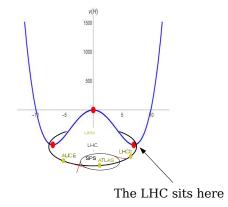
Note the "SM Higgs potential" might be a red herring



Picture from J. Lorenzo Díaz Cruz, Rev. mex. fis. 65 2020

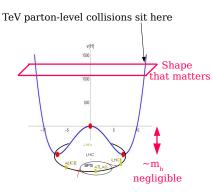
イロト イヨト イヨト

Note the "SM Higgs potential" might be a red herring



▲ □ ▶ ▲ □ ▶ ▲

If there is new physics

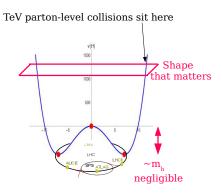


 $m_h \sim m_W \sim m_Z \ll \sqrt{s}$

 $\implies V(h)_{\rm SM-like} \ll \sqrt{s}$

(日)

If there is new physics



 $m_h \sim m_W \sim m_Z \ll \sqrt{s}$

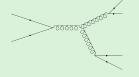
 $\implies V(h)_{\rm SM-like} \ll \sqrt{s}$

イロト イポト イラト イラト

Seven-parameter EFT description of what's important @LHC with new EWSBS physics

Is the LHC a high- or a low- energy machine?

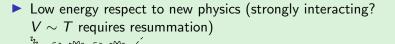
 High energy scattering: V << T, Feynman diagrams, Madgraph, etc.



= nar

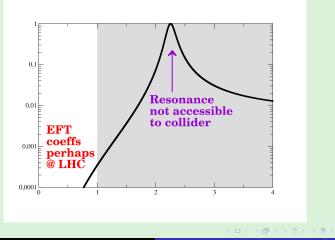
Is the LHC a high- or a low- energy machine?

 High energy scattering: V << T, Feynman diagrams, Madgraph, etc.



э.

Is the LHC a high- or a low- energy machine?



Expand partial wave amplitudes

$$T_I(s,t,u) = 16\eta\pi \sum_{J=0}^{\infty} (2J+1)t_{IJ}(s)P_J(\cos\theta_s)$$

=

Ξ.

Expand partial wave amplitudes

$$T_{I}(s, t, u) = 16\eta\pi \sum_{J=0}^{\infty} (2J+1)t_{IJ}(s)P_{J}(\cos\theta_{s})$$
$$t_{IJ}(s) \simeq \underbrace{t_{0}}_{O(s)} + \underbrace{t_{1}}_{O(s^{2})} + \dots$$
$$(\text{typical HEFT expansion})$$

=

э.

Inverse Amplitude Method

$$rac{1}{t}\simeq rac{1}{t_0+t_1}\simeq rac{1}{t_0}-rac{t_1}{t_0^2} \implies \boxed{t^{IAM}\simeq rac{t_0^2}{t_0-t_1}}$$

=

Ξ.

Inverse Amplitude Method

$$rac{1}{t}\simeq rac{1}{t_0+t_1}\simeq rac{1}{t_0}-rac{t_1}{t_0^2} \implies \boxed{t^{\prime AM}\simeq rac{t_0^2}{t_0-t_1}}$$

Advantage: for $s > s_{th}$,

$$\operatorname{Im} rac{1}{t_{IJ}(s)} = -\sigma(s) \simeq -1$$

글 🛌 글

Perturbative vs exact (elastic) unitarity

$\operatorname{Im} t_{IJ}(s) = \sigma(s)|t_{IJ}(s)|^2$

3 x 3

Perturbative vs exact (elastic) unitarity

 $\operatorname{Im} t_{IJ}(s) = \sigma(s)|t_{IJ}(s)|^2$

Exact in IAM

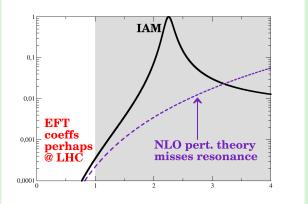
Only order by order in EFT

$$\operatorname{Im} t_{1}(s) = \sigma(s)|t_{0}(s)|^{2}$$

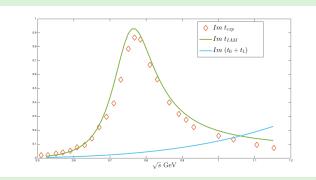
э.

Why would anyone care?

EFT reliable only near threshold

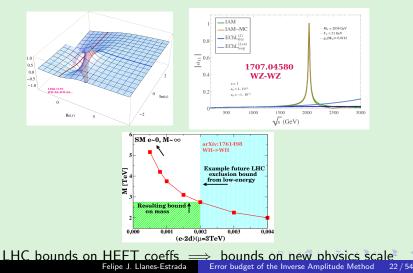


Much used in hadron physics to obtain resonances

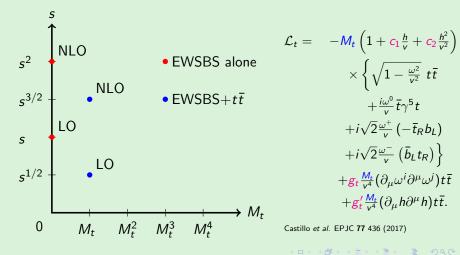


(This is an IAM prediction from threshold data, not a fit)

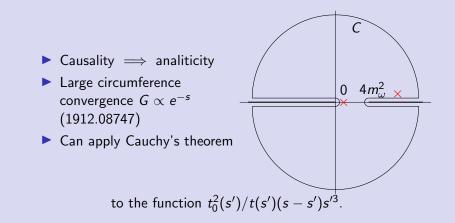
Prediction of resonances from HEFT



Coupling to top-antitop sector



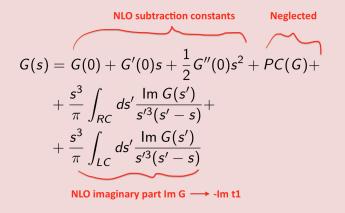
Use its dispersive derivation: 2010.13709



Master formula is a dispersion relation for $G(s) \equiv \frac{t_0^2(s)}{t(s)}$

$$G(s) = G(0) + G'(0)s + \frac{1}{2}G''(0)s^{2} + PC(G) + \frac{s^{3}}{\pi} \int_{RC} ds' \frac{\operatorname{Im} G(s')}{s'^{3}(s'-s)} + \frac{s^{3}}{\pi} \int_{LC} ds' \frac{\operatorname{Im} G(s')}{s'^{3}(s'-s)}$$

Dispersion relation: approximations



Gives
$$t \simeq t_0^2/(t_0 - t_1) = t_{IAM}$$
. The second secon

Sources of uncertainty

Neglected pole contributions of t⁻¹: subthreshold Adler zeroes and CDD zeroes of t.

• Inelasticities due to KK (hh in HEFT), 4ω , etc.

• $\mathcal{O}(p^4)$ truncation of subtraction constants.

• Left cut approximation $Im \ G \simeq -Im \ t_1$.

The SM is a very specific theory

$$egin{array}{rcl} \mathcal{L} &=& rac{1}{2}(
u+h)^2(\partial_\muec{\omega})^2 \ &+& rac{1}{2}(\partial_\mu h)^2+\dots \end{array}$$

In terms of three Goldstone bosons $\vec{\omega}$ and Higgs *h* fields

イロト イボト イヨト イヨト

SMEFT extension

$$\mathcal{L} = \frac{1}{2} (\nu + h)^2 A \left(\frac{(\nu + h)^2}{\Lambda^2} \right) (\partial_\mu \vec{\omega})^2 + \frac{1}{2} \left(1 + C \left(\frac{(\nu + h)^2}{\Lambda^2} \right) \right) (\partial_\mu h)^2 + \dots$$

・ロト ・四ト ・ヨト ・ヨト

æ

A(0) = 1, C(0) = 0

HEFT extension

 $\mathcal{L} = \frac{1}{2} v^2 F \left(\frac{h}{v}\right)^2 (\partial_{\mu} \vec{\omega})^2$ $+ \frac{1}{2} (\partial_{\mu} h)^2 + \dots$

F(0) = 1

イロト イヨト イヨト

3

(n.b. field redefinition shows $SMEFT \subset HEFT$)

If different symmetry breaking pattern... still field theory

イロト イヨト イヨト

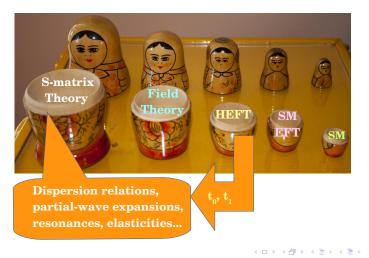
But S-matrix theory more general

< ロ > < 回 > < 回 > < 回 > < 回 >

э

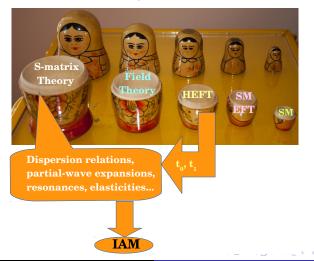
Basic particle concepts part of S-matrix theory

S-matrix too general: ambiguous \implies HEFT input



э

More predictive Inverse Amplitude Method



Other unitarization methods

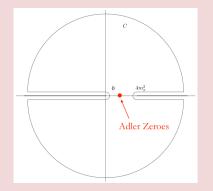
- K-matrix (no good analyticity properties)
- ► *N*/*D* method (integral equations, not algebraic)
- ▶ Large *N* method (only approximate for $O(4) \rightarrow O(3)$)
- Inverse Amplitude Method control theory uncertainties (this work)

We have provided improved/simplified versions of all methods R. L. Delgado, A. Dobado and FJLE, PRD **91**, 075017 2015; J.Phys.G 41 (2014) 025002.

くロ と く 同 と く ヨ と 一

э

Adler zeroes of t near threshold



EFT feature

$$t_0 + t_1 = a + bs + cs^2$$

vanishes near s = -a/b

・ロト (日本 (日本 (日本)) 目、 のへで

Adler zeroes of t near threshold

Tiny uncertainty in resonance region because at/below threshold

Adler zeroes of t near threshold

Tiny uncertainty in resonance region because at/below threshold

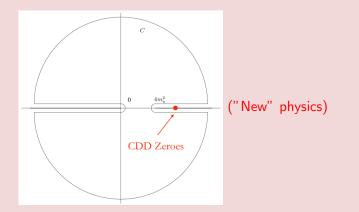
Uncertainty	Behavior	Displacement $\sqrt{s} = m_{ ho}$	improvable?
Adler zeroes of t	$(m_\omega/m_ ho)^4$	$10^{-3} - 10^{-4}$	Yes: mIAM

0712.2763

荷をくまたくまた。

= nar

CDD poles (t = 0 in resonance region: new physics)



・ロト (日本 (日本 (日本)) 目、 のへで

CDD poles (t = 0 in resonance region: new physics)

Can affect a resonance calculation dramatically

Need to

ロト (日) (日) (日) (日) (日) (日)

CDD poles (t = 0 in resonance region: new physics)

Can affect a resonance calculation dramatically

Need to

1. Check for CDD pole appearance: $t_0(s_C) + \operatorname{Re} t_1(s_C) = 0$

ロト (伊下 (テト (テト) 手) の (()

CDD poles (t = 0 in resonance region: new physics)

Can affect a resonance calculation dramatically

Need to

- 1. Check for CDD pole appearance: $t_0(s_C) + \operatorname{Re} t_1(s_C) = 0$
- 2. If present, modify

$$t_{\text{IAM}} = \frac{t_0^2}{t_0 - t_1} \rightarrow \frac{t_0^2}{t_0 - t_1 + \frac{s}{s - s_c} \text{Re}(t_1)}$$

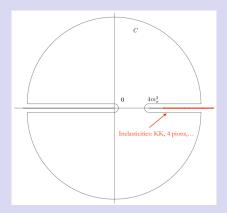
ロト (同下 (日下 (日下) 日) (つ)

CDD poles (t = 0 in resonance region: new physics)

Uncertainty	Behavior	Displacement $m_{ ho}$	improvable?
Adler zeroes of t		$10^{-3} - 10^{-4}$	Yes: mIAM
CDD poles at M_0	M_{R}^{2}/M_{0}^{2}	$0-\mathcal{O}(1)$	Yes

(ロト(目)(日)(日)(日)(日)

Inelastic 2-body channels



Inelastic 2-body channels

• Hadrons: $\pi\pi \to \pi\pi$ couples to *KK*

$$\operatorname{Im} \frac{1}{t_{\pi\pi}} \to -\sigma_{\pi\pi} \Big(1 + \frac{\sigma_{K\bar{K}}}{\sigma_{\pi\pi}} \frac{|t_{\pi\pi \to K\bar{K}}|^2}{|t_{\pi\pi \to \pi\pi}|^2} \Big)$$

Inelastic 2-body channels

• Hadrons: $\pi\pi \to \pi\pi$ couples to *KK*

$$\operatorname{Im} \frac{1}{t_{\pi\pi}} \to -\sigma_{\pi\pi} \Big(1 + \frac{\sigma_{K\bar{K}}}{\sigma_{\pi\pi}} \frac{|t_{\pi\pi \to K\bar{K}}|^2}{|t_{\pi\pi \to \pi\pi}|^2} \Big)$$

suppressed by phase-space $rac{\sigma_{Kar{K}}}{\sigma_{\pi\pi}}$ and low inelasticity in $t_{\pi\pi o Kar{K}}$

Inelastic 2-body channels

• Hadrons: $\pi\pi \to \pi\pi$ couples to *KK*

$$\operatorname{Im} \frac{1}{t_{\pi\pi}} \to -\sigma_{\pi\pi} \Big(1 + \frac{\sigma_{K\bar{K}}}{\sigma_{\pi\pi}} \frac{|t_{\pi\pi \to K\bar{K}}|^2}{|t_{\pi\pi \to \pi\pi}|^2} \Big)$$

suppressed by phase-space $rac{\sigma_{Kar{K}}}{\sigma_{\pi\pi}}$ and low inelasticity in $t_{\pi\pi o Kar{K}}$

▶ In HEFT only inelasticity in $\omega\omega - hh$ (actually zero in SM)

Inelastic 2-body channels

• Hadrons: $\pi\pi \to \pi\pi$ couples to *KK*

$$\operatorname{Im} \frac{1}{t_{\pi\pi}} \to -\sigma_{\pi\pi} \Big(1 + \frac{\sigma_{K\bar{K}}}{\sigma_{\pi\pi}} \frac{|t_{\pi\pi \to K\bar{K}}|^2}{|t_{\pi\pi \to \pi\pi}|^2} \Big)$$

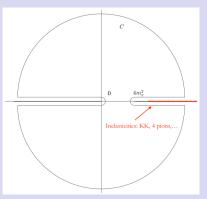
suppressed by phase-space $rac{\sigma_{Kar{K}}}{\sigma_{\pi\pi}}$ and low inelasticity in $t_{\pi\pi o Kar{K}}$

- ▶ In HEFT only inelasticity in $\omega\omega hh$ (actually zero in SM)
- We can use the coupled channel IAM directly or to estimate uncertainty in elastic IAM

Inelastic 2-body channels

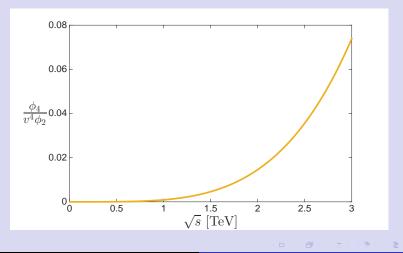
Uncertainty	Behavior	Displacement $m_{ ho}$	improvable?
Adler zeroes of t	$(m_\pi/m_ ho)^4$	$10^{-3} - 10^{-4}$	Yes: mIAM
CDD poles at M_0	M_{R}^{2}/M_{0}^{2}	$0-\mathcal{O}(1)$	Yes
Inelastic 2-body	$(\sqrt{s}/(4\pi f_\pi))^4$	10 ⁻³	Yes

Inelastic 4-body channels



 Difference with SMEFT: here, in ChPT or HEFT, additional particles *not* suppressed by the chiral counting. But phase space helps.

Inelastic 4-body channels

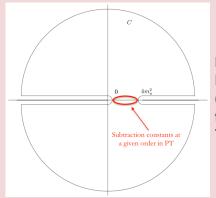


Inelastic 4-body channels

In hadron physics, (with elastic and 4- π inelastic amplitudes taken as similar)

Uncertainty	Behavior	Displacement $m_{ ho}$	improvable?
Adler zeroes of t	$(m_\pi/m_ ho)^4$	$10^{-3} - 10^{-4}$	Yes: mIAM
CDD poles at M_0	M_{R}^{2}/M_{0}^{2}	$0-\mathcal{O}(1)$	Yes
Inelastic 2-body	$(\sqrt{s}/(4\pi f_{\pi}))^4$	10^{-3}	Yes
Inelastic 4-body	$(\sqrt{s}/(4\pi f_\pi))^4$	10^{-4}	Partly

$O(p^4)$ truncation



Estimate based on size of NNLO counterterms (\implies subtraction constants) from Resonance Effective Field Theory

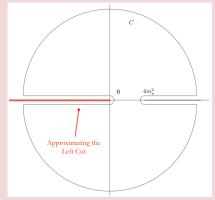
ロト・日下・日下・日 ヨー シタマ

$O(p^4)$ truncation

Uncertainty	Behavior	Displacement $m_{ ho}$	improvable?
Adler zeroes of t	$(m_\pi/m_ ho)^4$	$10^{-3} - 10^{-4}$	Yes: mIAM
CDD poles at M_0	M_R^2/M_0^2	$0-\mathcal{O}(1)$	Yes
Inelastic 2-body	$(\sqrt{s}/(4\pi f_{\pi}))^4$	10^{-3}	Yes
Inelastic 4-body	$(\sqrt{s}/(4\pi f_{\pi}))^4$	10^{-4}	Partly
$O(p^4)$ truncation	$(\sqrt{s}/(4\pi f_{\pi}))^4$	10^{-2}	Yes

$$G(s) = rac{t_0^2}{t} \simeq t_0 - t_1 - t_2 + rac{t_1^2}{t_0}$$

Approximate left cut



Need to check

$$\int_{LC} ds' \frac{\operatorname{Im} G + \operatorname{Im} t_1}{{s'}^3(s'-s)}$$

i.e., failure of IAM's

 $Im G = -Im t_1$

(ロ) (日) (日) (日) (日) (日) (日) (日)

over the left cut

Approximate left cut

Split interval in 3:

- ► Low-|s| (ChPT/HEFT \checkmark) $|s|^{\frac{1}{2}} < 470 \mathrm{MeV}$.
- Intermediate-|s|: Match to ChPT + natural-size counterterm. Currently studying LC parameterizations from GKPY eqns.
- High -|s|: Sugawara-Kanazawa relates it to right cut: Regge asymptotics there. Far from RC anyway.

Approximate left cut

Uncertainty	Behavior	Displacement $m_{ ho}$	improvable?
Adler zeroes of t	$(m_\pi/m_ ho)^4$	$10^{-3} - 10^{-4}$	Yes
CDD poles at M_0	M_R^2/M_0^2	$0-\mathcal{O}(1)$	Yes
Inelastic 2-body	$(\sqrt{s}/(4\pi f_{\pi}))^4$	10^{-3}	Yes
Inelastic 4body	$(\sqrt{s}/(4\pi f_{\pi}))^4$	10^{-4}	Partly
$O(p^4)$ truncation	$(\sqrt{s}/(4\pi f_{\pi}))^4$	10^{-2}	Yes
Left Cut	$(\sqrt{s}/(4\pi f_{\pi}))^4$	0.17	Partly

(D) (A) (C) (C) (C)

E.

Conclusion: if you know your EFT...

• It often fails little above threshold $s \simeq 4m^2 + \epsilon$

= nar

Conclusion: if you know your EFT...

- It often fails little above threshold $s \simeq 4m^2 + \epsilon$
- Inverse Amplitude Method extends it to first resonance or 4πF or new: first zero (CDD-IAM)

I na ∩

Conclusion: if you know your EFT...

- It often fails little above threshold $s \simeq 4m^2 + \epsilon$
- Inverse Amplitude Method extends it to first resonance or 4πF or new: first zero (CDD-IAM)
- We have laid out (2010.13709 [hep-ph]; VBSCAN-PUB-10-20) its systematic theory uncertainties

э.

Conclusion: if you know your EFT...

- It often fails little above threshold $s \simeq 4m^2 + \epsilon$
- Inverse Amplitude Method extends it to first resonance or 4πF or new: first zero (CDD-IAM)
- We have laid out (2010.13709 [hep-ph]; VBSCAN-PUB-10-20) its systematic theory uncertainties
- To make it more useful for BSM searches: shown evaluation with ρ-hadron, reassessable for (*ω*, *h*) if/when HEFT coefficients measured.

I naa

Funding acknowledgments

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093; grants MINECO:FPA2016-75654-C2-1-P, FPA2016-77313-P MICINN: PID2019-108655GB-I00, PID2019-106080GB-C21, PID2019-106080GB-C22 (Spain); UCM research group 910309 and the IPARCOS institute; and the VBSCAN COST action CA16108.

