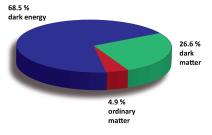
Two component dark matter model in light of Beam Dump experiments

Guillermo Palacio



< ロ > < 同 > < 回 > < 回 > < 回 > <

In Collaboration with: Amalia Betancur, Andres Fernando Castillo and Juan Guillermo Suarez

The Dark Matter problem

Universe Content Credit:NIST

- Observed motion of stars and galaxies.
- Gravitational lensing.
- ► The CMB observation and gravitational probes show that the Universe is made of around 25% non-visible matter. The so-called dark matter

・ロト ・回ト ・ヨト ・ヨト

The Model

The SM is extended with:

- $G_{SM} \otimes U(1)_D \otimes Z_2 \otimes Z'_2$
- Two complex scalar singlets, $\phi_1 \sim (-1, +, -)$ and $\phi_2 \sim (-1, -, +)$
- One complex scalar singlet, $s \sim (2, -, -)$, which develops **VEV** and breaks $U(1)_D$

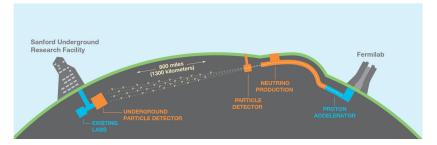
The Lagrangian reads:

$$\mathcal{L}_{\text{new}} \supset -\frac{\varepsilon}{2} F_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{A'} A'_{\mu} A'^{\mu} + \sum_{i=1}^{2} |D_{\mu} \phi_i|^2 + V(H, s, \phi_1, \phi_2)$$
$$\mathcal{L}_{\phi} = \frac{ig_D}{2} A'^{\mu} \sum_{i=1}^{2} \left[\partial_{\mu} (\phi_i^{\dagger}) \phi_i - \phi_i^{\dagger} (\partial_{\mu} \phi_i) \right]$$

- ▶ After EWSB, $G_{SM} \otimes U(1)_D \otimes Z_2 \otimes Z'_2 \longrightarrow SU(3)_C \otimes U(1)_{em} \otimes Z_2 \otimes Z'_2$ the mixing of the fields $(B_3^{\mu}, A^{\mu}, A'^{\mu})$ give rises to the boson Z, the photon γ and the dark photon $\gamma_D(A')$.
- The dark photon mixes with the ordinary matter.
- ϕ_1 and ϕ_2 are stable and dark matter candidates.

(ロ) (四) (三) (三) (三)

DUNE Near Detector


Protons at 120 GeV collides against a fixed-target made of carbon, then a bunch of particles are created (π⁰, η, η', ω, π[±], K[±], ...).

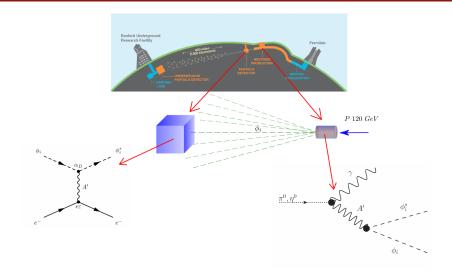
meson m	meson/POT	$Br(\mathbf{m}^+ o \mu^+ u_\mu)$	$Br(\mathbf{m}^+ o e^+ u_e)$
$\pi^+(\pi^-)$	4.3(4.0)	99.98 %	$1.2{ imes}10^{-4}$ %
$K^+(K^-)$	0.39(0.27)	63.56 %	1.58×10^{-5} %

- Neutrinos are created after the decay of $\pi^{\pm}, K^{\pm}, \ldots$
- Muon neutrinos are mostly created in the decays of π^{\pm}

イロト イヨト イヨト イヨト

LDM @ DUNE

Protons at 120 GeV collides against a fixed-target made of carbon, then a bunch of particles are created (π⁰, η, η', ω, π[±], K[±], ...).

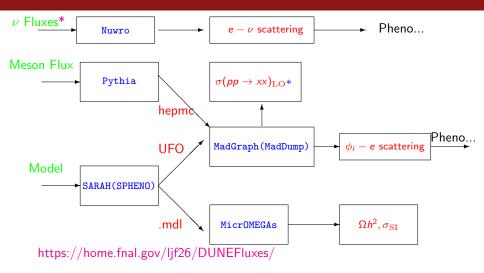

meson m	meson/POT	Br($\mathbf{m} \rightarrow \gamma \gamma$)
π^0	4.8	99.82 %
η	0.5	39.41 %

• LDM could be produced thanks to the mixing between γ -A'

3

・ロト ・回ト ・ヨト ・ヨト

DUNE Near Detector



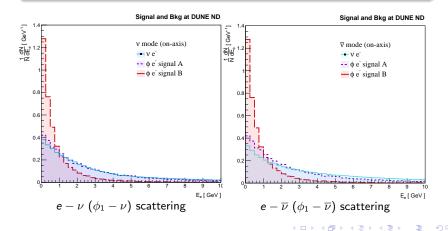
6 / 12

2

イロン イロン イヨン イヨン

HEP Tools implementation for Signal and Background

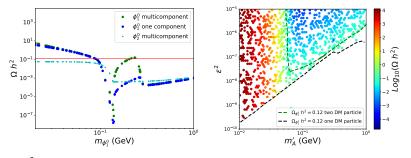
э


・ロト ・回ト ・ヨト ・ヨト

Signal and Background on-axis

Benchmark Points

► BPA
$$\rightarrow M_{A'} = 30 \text{ MeV}, \ M_{\phi 1} = 20 \text{ MeV}, \ M_{\phi 2} = 1.7 \text{ GeV}, \ \alpha_D \varepsilon^4 = 10^{-13}$$


▶ BPB →
$$M_{A'} = 90$$
 MeV, $M_{\phi 1} = 30$ MeV, $M_{\phi 2} = 1.7$ GeV, $\alpha_D \varepsilon^4 = 10^{-13}$

Dark Matter Results

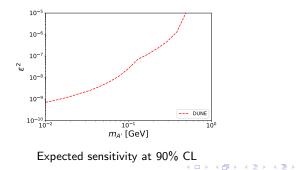
Benchmark Points

$$M_{A'} = 3M_{\phi 1}, \ M_{\phi 2} = 1.7 \text{ GeV}, \ \alpha_D = \frac{g_D^2}{4\pi} = 0.1$$

 Ωh^2 for one and two DM components

 ε^2 vs $m_{A'}$

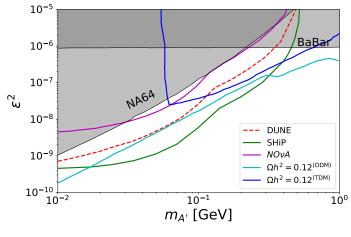
<ロ> (日) (日) (日) (日) (日)


2

Potential exclusion reach of beam dump experiments

Benchmark Point

$$M_{A'} = 3M_{\phi 1}, M_{\phi 2} = 1.7 \text{ GeV}, \ \alpha_D = 0.1$$


For the sensitivity analysis we consider the figure of merit $Z = \frac{N_s}{\sqrt{N_B}}$, and Z = 1.64 will correspond to a 90% CL. N_s is the number of events for the signal (DM – *e* scattering) and N_B is the number of events for the background ($\nu - e$ scattering)

Potential exclusion reach of beam dump experiments

Benchmark Point

$$M_{A'} = 3M_{\phi 1}, M_{\phi 2} = 1.7 \text{ GeV}, \ \alpha_D = 0.1$$

Expected sensitivity at 90% CL_{a} , CB_{b} , CB_{b} , CB_{b}

Guillermo Palacio

э

- Beam Dump experiments has the potential to explore a big portion of the parameter space of the model.
- The correct relic density can be explained in regions that Beam Dump experiments will soon probe.
- Off-axis analysis and multi-component dark matter pheno still a work in progress.
- Detector response is not implemented in the analysis.

・ロト ・個ト ・ヨト ・ヨト