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Introduction



• Standard Model + 3 right handed neutrinos (SMRHN). Assuming

Dirac masses for the neutrinos.

• Texture zeros.

• VPMNS and CP-violating phase, the neutrino mass squared

differences δm2
21, δm

2
31, and the three charged lepton masses.

• Rotation Matrix as function of the mass values of the particles.

• Ramond, Robert and Ross are the type of textures that we are

analysing. [Nucl. Phys. B, 19:406. 1993.]
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Counting parameters



Yukawa Lagrangian for lepton sector

− LD = ν̄LMnνR + ¯̀
LM``R + h.c, (1)

where νL,R = (νe , νµ, ντ )TL,R and `L,R = (e, µ, τ)TL,R .

The matrices Mn and Ml are in general 3× 3 complex matrices.

In the most general case, they contain 36 free parameters. In the context

of the SMRHN, such a large number of parameters can be drastically cut

by making use of the polar theorem of matrix algebra, by which, one can

always decompose a general complex matrix as the product of a

Hermitian and a unitary matrix.
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Parameters

A = SU

S is a hermitian and U is an unitary matrix.

36
polar theorem−−−−−−−−→ 18.

6
5 are absorbed−−−−−−−−−→ 1 phase.
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Weak Basis Transformation

In the context of the SMRHN, it is always possible to implement the

so-called weak basis transformation (WBT).

Mn → MR
n = UMnU

†, M` → MR
` = UM`U

†, (2)

where U is an arbitrary unitary matrix. We say then that the two

representations (Mn,M`) and (MR
n ,M

R
` ) are equivalent in the sense that

they are related to the same Pontecorvo-Maki-Nakagawa-Sakata

matrix (PMNS matrix).

V R
PMNS = UR

l U
R†
ν = UlU

†UU†ν = UlU
†
ν = VPMNS ,
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Always it is possible to find three non-physical texture zeros, that means,

the number of free mathematical parameters in Mn and M` reduces from

twelve to nine real parameters and one phase.

On the other hand, we have physical values for the six Dirac lepton

masses, the three mixing angles, and the CP violation phase.

However, for the case of neutrinos, their masses are not known, and only

the square mass differences are experimentally available, i.e.,

δm2
21 = m2

2 −m2
1 and δm2

31 = m2
3 −m2

1. Then have 9 free parameters and

8 experimental restrictions.
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Five texture zeros: first case



Lagrangian

− LD = ν̄′LM
′
nν
′
R + ν̄′RM

′†
n ν
′
L + ¯̀′

LM
′
``
′
R + ¯̀′

RM
′†
` `
′
L, (3)

where M ′n and M ′` are the neutrino and charged lepton mass matrices

respectively.

M ′n =

cn an 0

a∗n 0 bn
0 b∗n 0

 , M ′` =

 0 a` 0

a∗` d` b`
0 b∗` c`

 . (4)

The first step is to remove the phases; this can be done by the following

unitary transformation:

M ′n,` = λ†n,`Mn,`λn,`, (5)

which is achieved by using the diagonal matrices

λn = (1, e iαn1 , e iαn1
+iαn2 ) and λ` = (1, e iα`1 , e iα`1

+iα`2 ),
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If we rotate these matrices by using the orthogonal transformation

Rn,` (RT
n,` Rn,` = 1)

M ′n,` = λ†n,`R
T
n,`

m1,e 0 0

0 −m2,µ 0

0 0 m3,τ

Rn,`λn,` ≡ Un,`M
diag
n,` U†n,`, (6)

We use Un ≡ (Rnλn)† and U` ≡ (R`λ`)
†, that are two unitary matrices

used to rotate from the weak basis to the physical basis.

ν′L,R = UnνL,R , `′L,R = U``L,R . (7)
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Replacing these expressions in the lepton sector of the weak current, we

obtain

LW− = − g√
2
W− ¯̀′

Lγ
µν′L + h.c = − g√

2
W− ¯̀

Lγ
µU†`UnνL + h.c, (8)

in such a way that the PMNS matrix is given by

VPMNS = U†`Un = R` Φ RT
n , (9)

normal ordering is assumed, i.e.,: m3 > m2 > m1, where:

m2
2 = m2

1 + δm2
21, and m2

3 = m2
1 + δm2

31, with δm2
21, δm

2
31 > 0
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By imposing the invariance of the trace and the determinant of the mass

matrices (tr[M ′n,`] = tr[Mdiag
n,` ], tr

[(
M ′n,`

)2
]

= tr

[(
Mdiag

n,`

)2
]

, and

Det[M ′n,`] = Det[Mdiag
n,` ]), the following relations are obtained for this

particular texture:

cn = m1 −m2 + m3,

|an| =

√
(m1 −m2)(m1 + m3)(m2 −m3)

m1 −m2 + m3
,

|bn| =

√
m1 m2 m3

m1 −m2 + m3
,

d` = me −mµ + mτ − c`,

|b`| =

√
(c` −me)(c` + mµ)(mτ − c`)

c`
,

|a`| =

√
me mµmτ

c`
.
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From the previous identifications, it is possible to obtain an explicit form

for the mass matrices of leptons that allows us to obtain, through

diagonalization of Mn and M`, the orthogonal matrices in Eq. (9),

Rn =


−
√

m1(m2−m1)(m1+m3)
(m1+m2)(m3−m1)(m1−m2+m3)

√
m1(m3−m2)

(m1+m2)(m3−m1)

√
m2m3(m3−m2)

(m1+m2)(m3−m1)(m1−m2+m3)√
m2(m1−m2)(m2−m3)

(m1+m2)(m2+m3)(m1−m2+m3)
−
√

m2(m1+m3)
(m1+m2)(m2+m3)

√
m1m3(m1+m3)

(m1+m2)(m2+m3)(m1−m2+m3)√
m3(m1+m3)(m3−m2)

(m3−m1)(m2+m3)(m1−m2+m3)

√
m3(m2−m1)

(m2+m3)(m3−m1)

√
m1m2(m2−m1)

(m3−m1)(m2+m3)(m1−m2+m3)

 ,

R` =


−
√

mµmτ (c`−me )

c`(me+mµ)(mτ−me )
−
√

me (c`−me )
(me+mµ)(mτ−me )

√
me (c`+mµ)(c`−mτ )

c`(me+mµ)(me−mτ )√
memτ (c`+mµ)

c`(me+mµ)(mµ+mτ )
−
√

mµ(c`+mµ)

(me+mµ)(mµ+mτ )

√
mµ(me−c`)(c`−mτ )

c`(me+mµ)(mµ+mτ )√
memµ(c`−mτ )

c`(me−mτ )(mµ+mτ )

√
mτ (mτ−c`)

(mτ−me )(mµ+mτ )

√
mτ (c`−me )(c`+mµ)

c`(mτ−me )(mµ+mτ )

 .
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From Eq. (9), we know that VPMNS = R` ΦRT
n , with Φ as the following

diagonal matrix:

Φ =

1 0 0

0 e iφ1 0

0 0 e iφ2

 .

We use an χ2 analysis, using as free parameters (m1, c`, φ1, φ2)., in this

way:

χ2 = P2
J +

∑
i,j=1,2,3

P2
ij ,

where the pulls are

Pij =
Uij − Ūij

δUij
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The Jarlskog invariant, is given by

J̄ = c12c23c
2
13s12s23s13 sin δ = −0.0270054

and the corresponding 1σ uncertainty is δJ = 0.0106304

The theoretical

prediction is given by J = Im (Uµ3U
∗
τ3Uµ2U

∗
τ2), where in this expression

U stands for the PMNS mixing matrix.

Our best fit results are

m1 (eV) c` (eV) φ1 (rad) φ2 (rad) χ2
min

0.00395±0.00062
0.00078 523176. 0.0190664 1.56122 12.4204

The fit goodness is χ2/d.o.f = 2.07
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Five texture zeros: second case



Now the textures are

M ′n =

 0 Cn 0

C∗n En Bn

0 B∗n An

 , M ′` =

 0 C` 0

C∗` 0 B`
0 B∗` A`

 . (10)

M` = U`D`U
†
` (M`)i,j = |(M ′`)i,j |), where D` =Diag.(me ,−mµ,mτ ),

U` =


e iθ1

√
mµmτ (A`−me )

A`(mµ+me )(mτ−me ) −e iθ2

√
memτ (mµ+Al )

A`(mµ+me )(mτ+mµ)

√
−memµ(A`−mτ )

A`(mτ−me )(mτ+mµ)

e iθ1

√
me (me−A`)

(−mµ−me )(mτ−me ) e iθ2

√
mµ(A`+mµ)

(mµ+me )(mτ+mµ)

√
mτ (mτ−A`)

(mτ−me )(mτ+mµ)

−e iθ1

√
me (Al +mµ)(A`−mτ )

A`(−mµ−me )(mτ−me ) −e iθ2

√
mµ(A`−me )(mτ−A`)

A`(mµ+me )(mτ+mµ)

√
mτ (Al−me )(A`+mµ)

A`(mτ−me )(mτ+mµ)

 ,

(11)

where θ1 and θ2 are arbitrary phases and A` = me −mµ + mτ .
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To obtain the three texture zeros in the lepton mass matrix, the following

relations are also necessary:

|B`| =

√
(A` −me)(A` + mµ)(mτ − A`)

A`
and |C`| =

√
me mµmτ

A`
.

For the neutrino sector, we are subject to the condition U†`Un = VPMNS,

and necessarily, the diagonalizing matrix must be given by Un = U`VPMNS,

M ′n =

 0 Cn 0

C∗n En Bn

0 B∗n An

 = U`(VPMNS)Dn(VPMNS)†U†` ≡ UnDnU
†
n . (12)
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For this case the free parameters are: m1 from the diagonal matrix

Dn=Diag.(m1,−m2,m3), and θ1 and θ2 from U`.

From these expressions, we can obtain useful relations by identifying U`
with the WBT U in (2).

When solving numerically to obtain the textures for the neutrino mass

matrix in the normal hierarchy, we obtain

m1 = (0.00354± 0.00088) eV,

m2 = (0.00930± 0.00036) eV,

m3 = (0.05040± 0.00030) eV.

(13)
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With An = 0.0251821, Bn = (−0.0122955 + 0.0244187i),

Cn = (0.00427236 + 0.00689527i), En = 0.0194623,

A` = 1671.71× 106, |B`| = 432.237× 106, |C`| = 7.57544× 106, and

phases θ1 = 0.154895 and θ2 = 2.01797. The phases of B` and C` were

absorbed in Bn and Cn by means of a redefinition, through a WBT, in a

previous step.

And,
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Conclusions



• Using textures zeros it is possible to determine the neutrino masses.

• An ansatz for the lepton mass matrices emerges from the

quark-lepton similarity, allowing us to extend the analysis of the

mass matrices from the quark sector to the lepton sector, which is a

natural.

• Without losing generality, the mass matrices of the lepton sector can

be Hermitian in such a way that it is possible to apply the WBT

formalism without any restriction

• In both cases, the mass of the lightest neutrino can be considered as

a prediction of the models studied.
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Thank you!
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