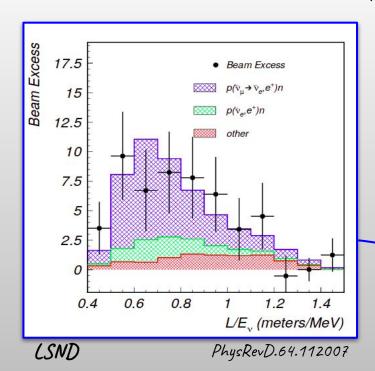
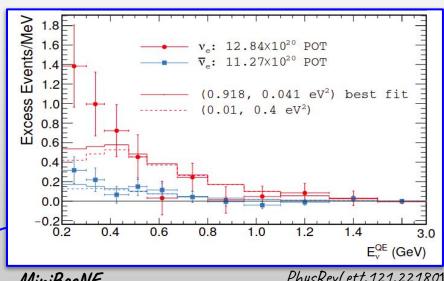
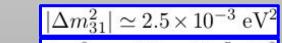


Heavy Sterile Neutrino Decay at Short-Baseline Experiments


Based on: <u>IHEP 07 (2020) 141</u>

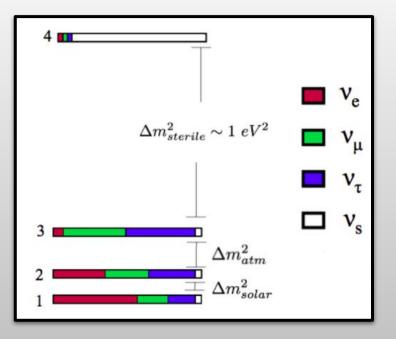

André de Gouvêa Orlando Peres Suprabh Prakash *Gabriela Vitti Stenico*

Short-Baseline Anomalies


Positive signal of electron (anti)neutrino candidates in the LSND and MiniBooNE experiments;

MiniBooNE

PhysRevLett.121.221801


 $\Delta m_{21}^2 \simeq 7.5 \times 10^{-5} \text{ eV}^2$

Oscillation Phase:

$$1.27 \frac{\Delta m_{ij}^2/\text{eV}^2)(L/\text{m})}{(E/\text{MeV})} \sim \mathcal{O}(1)$$

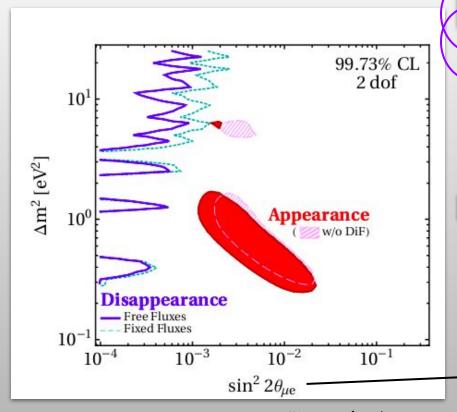
~ 1 m/MeV for LSND and MiniBooNE

3+1 Oscillation Model

$$u_lpha = \sum\limits_{i=1}^3 U_{lpha i}
u_i + U_{lpha 4}
u_4$$

$$U_{3+1} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ \vdots & \vdots & U_{\mu 4} \\ \vdots & \vdots & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{bmatrix}$$

At short-baseline:


$$P_{\nu_e \to \nu_e} = 1 - 4(1 - |U_{e4}|^2)|U_{e4}|^2 \sin^2(1.27\Delta m_{41}^2 L/E)$$

$$P_{\nu_\mu \to \nu_\mu} = 1 - 4(1 - |U_{\mu 4}|^2)|U_{\mu 4}|^2 \sin^2(1.27\Delta m_{41}^2 L/E)$$

$$P_{\nu_{\mu} \to \nu_{e}} = 4|U_{e4}|^{2}|U_{\mu 4}|^{2}\sin^{2}(1.27\Delta m_{41}^{2}L/E)$$

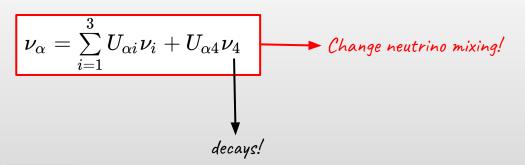
Disappearance searches:

$$P_{\nu_e \to \nu_e} = 1 - 4(1 - |U_{e4}|^2)|U_{e4}|^2 \sin^2(1.27\Delta m_{41}^2 L/E)$$

$$P_{\nu_\mu \to \nu_\mu} = 1 - 4(1 - |U_{\mu 4}|^2)|U_{\mu 4}|^2 \sin^2(1.27\Delta m_{41}^2 L/E)$$

Gallium and Reactor Anomalies OK!

Null results: MINOS/MINOS+ IceCube Super-Kamiokande

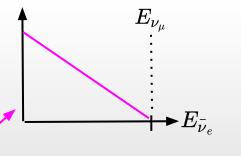

Appearance searches:

$$P_{\nu_{\mu} \to \nu_{e}} = 4|U_{e4}|^{2}|U_{\mu 4}|^{2}\sin^{2}(1.27\Delta m_{41}^{2}L/E)|$$

LSND and MiniBoonE OK!


$$\sin^2 2\theta_{e\mu} = 4 U_{e4}^2 U_{\mu 4}^2$$

Alternative solution to the Short-Baseline Anomalies!


How?

$$\mathcal{L} = -g_M \bar{\nu}_e \nu_4 \phi + \text{h. c.}$$

$$\Gamma_{4e} = rac{{{{\left| {{g_M}}
ight|}^2}m_4^2}}{{32\pi {E_4}}}$$

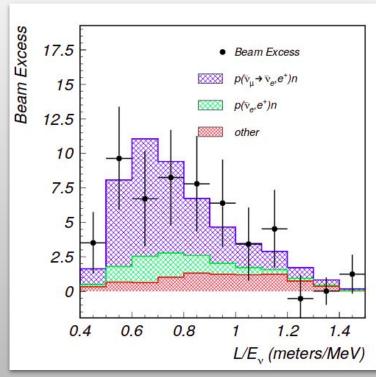
In Short-Baseline: Δm^2_{31} and Δm^2_{21} -> 0

In practice:

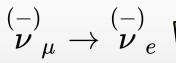
$$rac{dP_{
u_{\mu}
ightarrow^{(-)}}(E_{
u_{\mu}})}{dE_{
u_{e}}^{(-)}} = W(E_{
u_{\mu}},E_{ar{
u_{e}}})^{rac{1}{2}}|U_{\mu4}|^{2}(1-e^{-\Gamma_{4}L}) \
onumber \
o$$

 $u_{\mu}
ightarrow ar{
u}_{e}$

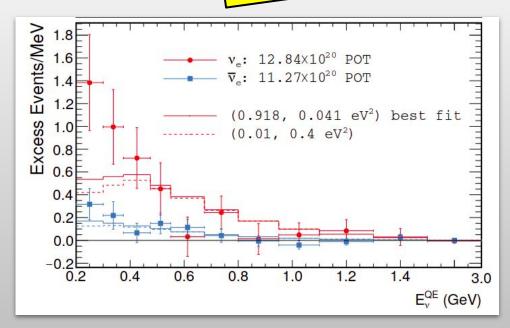
Appearance searches!


$$P_{
u_{\mu}
ightarrow
u_{\mu}}^{(-)}(E_{
u_{\mu}})=\left(1-|U_{\mu4}|^{2}
ight)^{2}+\left(|U_{\mu4}|^{2}
ight)^{2}e^{-\Gamma_{4}L}$$

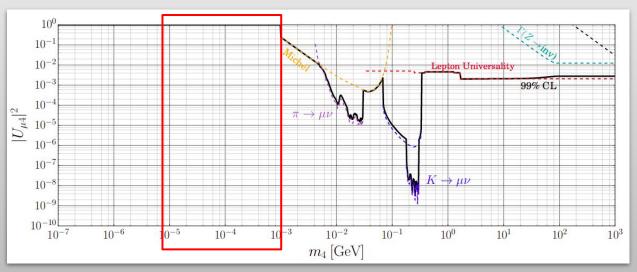
$$P_{
u_e
ightarrow
u_e}^{\scriptscriptstyle(-)}{}_{
u_e}^{\scriptscriptstyle(-)}=1$$
 $\left|U_{e4}
ight|^2=0$


Disappearance searches!

 $ightharpoonup E_{\nu_e}$


LSND and MiniBooNE

PhysRevD.64.112007

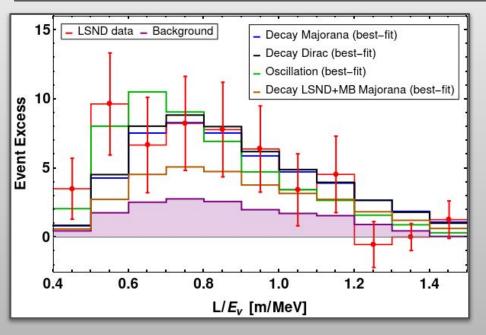

Can decay model fit these data?

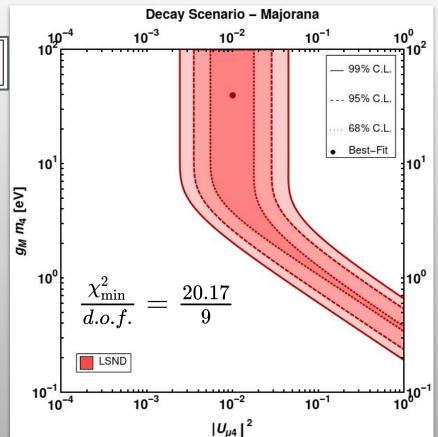
PhysRevLett.121.221801

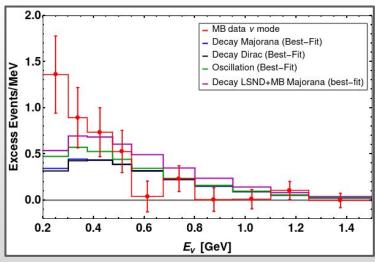
$$\left(\left| U_{\mu 4}
ight|^2, g_M m_4
ight)$$

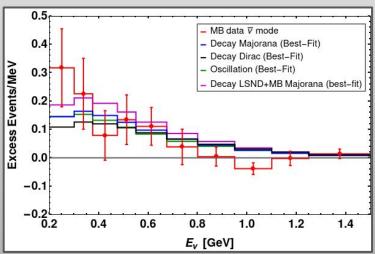
Bounds from: PhysRevD.93.053007
$$\longrightarrow$$
 $|U_{\mu4}|^2g_M^2<1.9 imes10^{-7}$

 $10~keV \leq m_4 \leq 1~MeV$

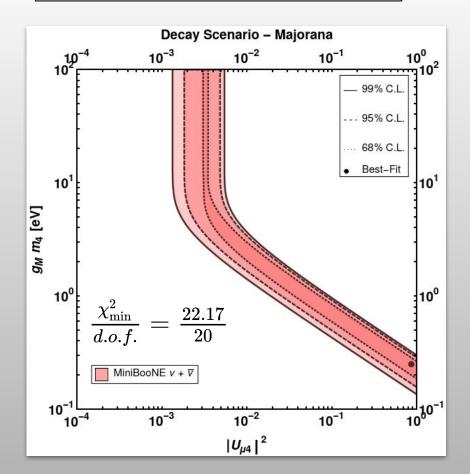

PhysRevD.93.033005

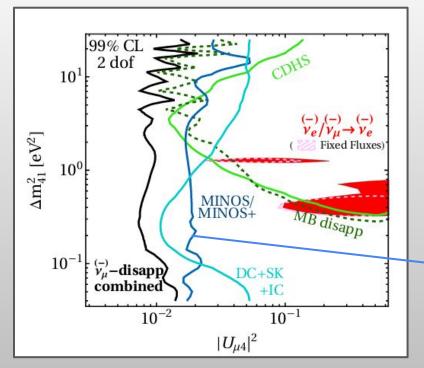

Decay Scenario for LSND


$$rac{dP_{
u_{\mu}
ightarrow
u_{e}}(E_{
u_{\mu}})}{dE_{
u_{e}}}=W(E_{
u_{\mu}},E_{
u_{e}}^{(-)})rac{1}{2}|U_{\mu4}|^{2}(1-e^{-\Gamma_{4}L})$$

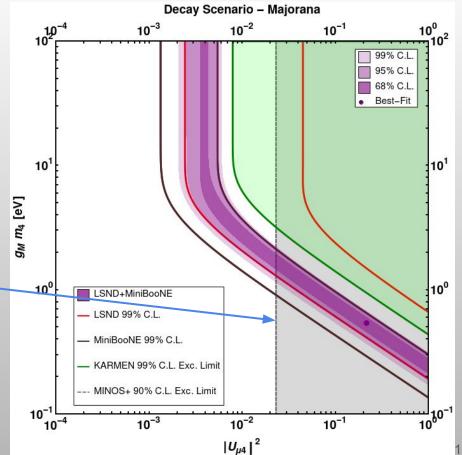

Event Rates:

$$\boxed{\frac{dN}{dE_{\bar{\nu}_e}} = C \, \sigma(E_{\bar{\nu}_e}) \, \left[\phi_0 \frac{dP_{\nu_{\mu} \to \bar{\nu}_e}(E_{\nu_{\mu}}^{(\pi)})}{dE_{\bar{\nu}_e}} + \int_{E_{\bar{\nu}_e}}^{E_{\bar{\nu}_{\mu}}^{\max}} dE_{\bar{\nu}_{\mu}} \, \phi_{\mu}(E_{\bar{\nu}_{\mu}}) \, \frac{dP_{\bar{\nu}_{\mu} \to \bar{\nu}_e}(E_{\bar{\nu}_{\mu}})}{dE_{\bar{\nu}_e}} \right]}$$





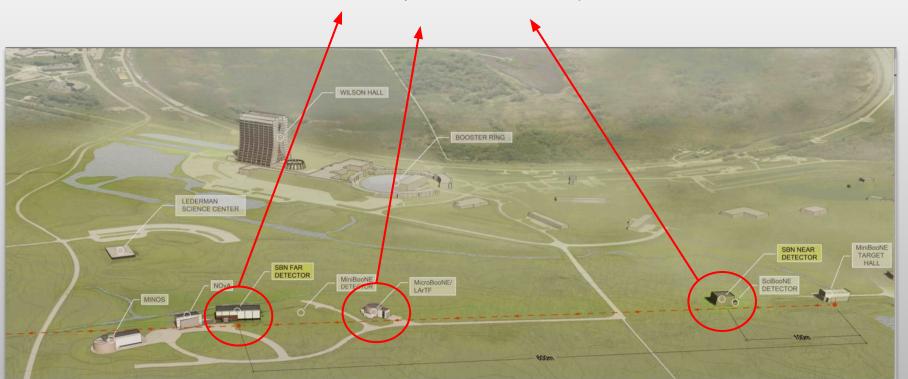
Decay Scenario for MiniBooNE



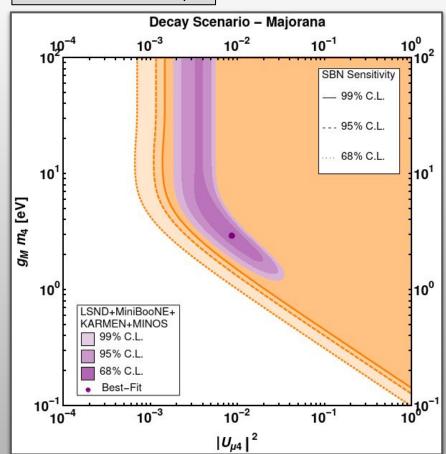
What about disappearance searches?

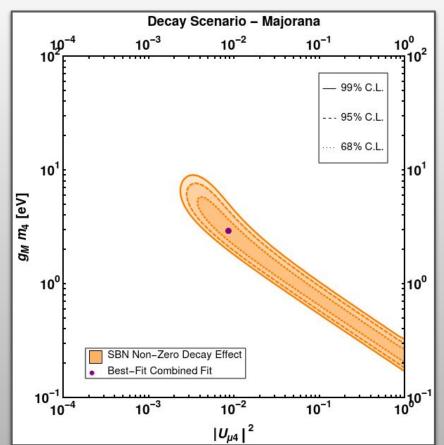
IHEP 1808 (2018) 010

$$P_{
u_{\mu}
ightarrow
u_{\mu}}(E_{
u_{\mu}}) = \left(1 - \left|U_{\mu 4}
ight|^{2}
ight)^{2} + \left(\left|U_{\mu 4}
ight|^{2}
ight)^{2} e^{-\Gamma_{4}L}$$



Summary of the Analysis


Experiment (app/disapp)	$\chi^2_{\rm min}/{ m dof}$	Best-fit $(U_{\mu 4} ^2, gm_4)$
LSND+MiniBooNE (app) KARMEN (app)	$48.34/31 \\ 6.47/7$	(0.21, 0.54 eV) No positive signal
All+MINOS (app+disapp)	58.45/40	(0.0086, 2.93 eV)


SBN Sensitivity

What is the SBN potential to exclude decay scenario from null-flavour transitions?

SBN Sensitivity

Conclusions

1. Decay Scenario is a potential physical model to deal with Short-Baseline anomaly data sets;

2. SBN has potential to explore the parameter region of this model!

Thank you!

