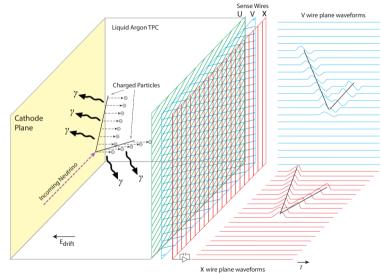
Description and constraints of the back-end trigger of the Photon Detection System in DUNE

Manuel Arroyave¹ on behalf of the DUNE collaboration

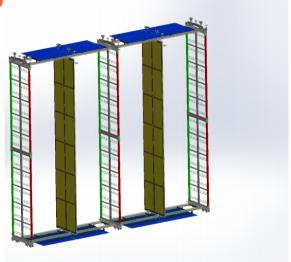
¹Universidad EIA-Colombia

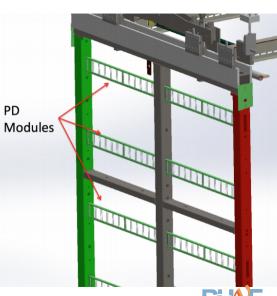
December 1, 2020


¿Why should we need PDS at DUNE?

In the Time Projection Chamber, we can describe events by the traces of charged particles across the Electric field between cathode and anode.

DEEP UNDERGROUND NEUTRINO EXPERIMENT


Charge detection



DEEP UNDERGROUND NEUTRINO EXPERIMENT

PD

¿Why we need PDS at DUNE?

t_0 description.

- description of the x axis
- ► enhances the full 3D reconstruction
- vertex of SNB events
- enhances SNB triggering

Calorimetry

- Crosscheck to the energy measured by the TPC
- Improve the energy resolution

¿Why we need PDS at DUNE?

New areas of research

- Enhance DUNE's capability to observe few-MeV scale events, such as solar neutrinos
- Identify Michel electrons from decay produced by muons

2 Sets of events

In DUNE we will have 2 sets of events.

Those we can "predict"

Beam

Calibration

Those we can't

Proton Decay SNB

Trigger-less DAQ

DUNE will use zero suppression at both detectors in the SP to reduce streaming data upstairs.

APAs

Comparison with a set of patterns

PDS

Threshold based on simulation Eventually we can use FFT

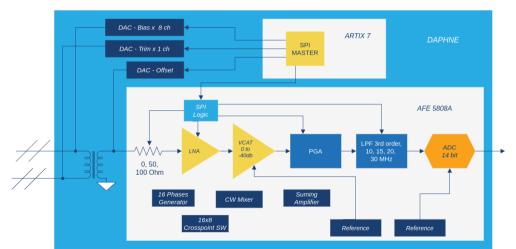
Data we are working

TDR

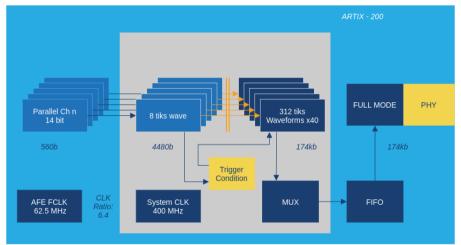
- ► 24 PE/MeV
- ▶ 0.5 PE/channel

New sims

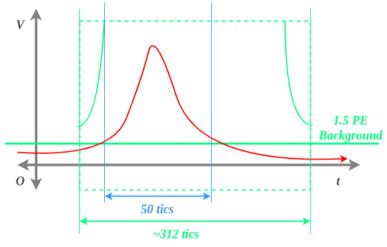
- ► 24 PE/MeV
- ► 1PE production x 10 Ar-39
- ► 1.5 PE/channel
- ► trigger rate 4.8k/s



Constrains


SP-PDS-13	Data transfer rate from SP-PD to DAQ	< 8 Gbps
SP-PDS-14	Signal-to-noise in SP-PD	> 4
SP-PDS-15	Dark noise rate in SP-PD	$< 1\mathrm{kHz}$
SP-PDS-16	Dynamic Range in SP-PD	< 20 %

Analog Front End



Triggering

Waveform

Rise time of the small pieces of information



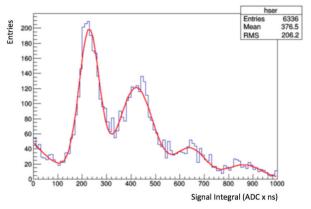
Fig 1. Rise Time Diagram

* It doesn't consider the fling time on the cryo

It describes the time that takes the minimal piece of information to go through all the system ~340ns

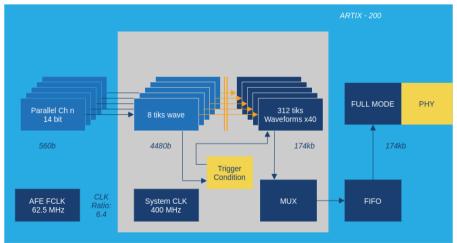
Bandwidth

Requirements


- ► 1Gb/s for data streaming
- ► Short time resolution

Specs

- ► 4.8 *Gb/s* for data streaming
- ► 3.7*Gb*/*s* effective bandwidth
- ightharpoonup $\approx 35 Gb/s$ rate of digitization
- ightharpoonup pprox 10% of the full digitization capacity



histogram of the Arapuca Tests

from MOTTA et al. (2018). ARAPUCA light trap for large liquid argon time projection chambers. 153. 10.22323/1.295.0153.

Triggering

