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1930: Neutrino existence is proposed

“I have done a terrible thing, I have 
postulated a particle that cannot be 

detected.” 

Scott, F. A. Phys. Rev. 48.5 (1935): 391.

Beta Decay Spectrum
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Reactor Neutrino Physics

• Nuclear reactors are the largest human-made source of neutrinos
• First neutrino detection took place at a reactor antineutrino 

experiment.
• First observation of a non-zero 𝜃!" mixing angle

Image source: https://physics.aps.org/articles/v10/66
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Reactor Antineutrino Anomaly, a motivation for PROSPECT
• Short-baseline reactor experiments have reported a deficit of the  

measured antineutrino rate when compared to theoretical 
predictions

Antineutrino anomaly bump in 4-6 MeV Observed flux deficit of about 6%

Feng Peng An et al. Measurement of the Reactor Antineutrino Flux and
Spectrum at Daya Bay. Phys. Rev. Lett., 116(6):061801, 2016, 1508.04233.
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HFIR

Image source: https://neutrons.ornl.gov/hfir
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HFIR

Image source: https://neutrons.ornl.gov/hfir
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PROSPECT Detector at HFIR

• 93% 235U Fuel

• 85 MW thermal power

• Compact core

• Huge flux in the few MeV 
range

Layout of the PROSPECT experiment Schematic of the active detector volume 

• 14 x 11 array of 6Li doped liquid scintillator for 
detecting reactor antineutrinos (6.7-9.2 m from 
compact highly enriched uranium reactor 
core)

J. Ashenfelter et al. (PROSPECT), Nucl. Inst. Meth. A 922, 287(2019).
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Antineutrino Detection

• PROSPECT detects antineutrinos via the 
Inverse Beta Decay (IBD) process

• Prompt signal (𝑒!) provides a good energy 
estimate of incoming 𝜈

• Localized delayed (n - "𝐿𝑖) signal 

−

• Differences in ionization density between 
electronic/nuclear recoil type events result 
in distinct pulse shapes for each event

• Prompt and delayed signal posses unique 
pulse shapes (different from background 
events) 

Schematic of IBD interaction in 6LiLS
Average waveforms for electronic/nuclear recoil 
type events

PROSPECT Collaboration, arXiv:2006.11210 (2020)
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Antineutrino Event Reconstruction

• PSD-energy correlation is used to discriminate 
between prompt and delayed signal events

• Background reduction after sequential 
application of IBD selection cuts

Prompt energy/PSD distribution for IBD-like events IBD selection cuts (Simulation)

J. Ashenfelter et al. (PROSPECT), JINST 13, P06023 (2018). J. Ashenfelter et al., (PROSPECT collaboration), The PROSPECT 
physics program, J. Phys. G 43 (2016) 113001.

𝒏𝑳𝒊
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PROSPECT-FIRST Results
First search for short-baseline neutrino oscillations 
at HFIR with PROSPECT

Measurement of the Antineutrino Spectrum from 
235U Fission at HFIR with PROSPECT

J. Ashenfelter et al. (PROSPECT), Phys. Rev. Lett. 122, 251801 (2019).

J. Ashenfelter et al. (PROSPECT), Phys. Rev. Lett. 121, 251802 (2018).
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Machine Learning Applications at PROSPECT

Goal: Improving antineutrino 
event reconstruction by using ML 
techniques.
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Machine Learning Applications at PROSPECT
Single PMT Event Reconstruction
(ML Project 1)
● ML techniques to maintain/improve

particle-ID performance regardless
of evolving detector conditions
(single/double ended PMT readout).

● Supervised ML model trained on
simulation and validated on
experimental data.

● Improvement on cosmogenic
background reduction.
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Machine Learning Applications at PROSPECT
Siamese LSTM/CNN for Pulse 
Matching (ML Project 2)
● CNN’s vs LSTM’s?
● Hyperparameter tuning.
● Optimizing choice of

input information.

Input 1:
[E1, t1, x1]

Input 2 :
[E2,t2,x2]

Prediction
[0,1]

CNN 1

Cosine 
distance

CNN 2

How similar are the 
input vectors?

Single PMT Event Reconstruction
(ML Project 1)
● ML techniques to maintain/improve

particle-ID performance regardless
of evolving detector conditions
(single/double ended PMT readout).

● Supervised ML model trained on
simulation and validated on
experimental data.

● Improvement on cosmogenic
background reduction.
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Positron ID through ortho-
positronium tagging (ML Project 4)
● Attempting to perform Particle-ID at

waveform level.
● NN to learn distortion in timing

distribution of pulses caused by o-Ps
formation.

● Great impact on background
suppression!
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Positron ID through o-Ps tagging
• Can we ID a subset of positrons though 

positronium formation?

• If the distortion in the timing distribution
induced by o-Ps is not smeared by optical 
effects, we can use this feature as an extra 
handle for particle ID (P-ID).

• Initial simulations indicate that we are not 
sensitive to a 3ns OPs lifetime

Para Positronium, 
(t=1, 2.5ns)

Ortho Positronium, 
(t=1,3ns)

PROSPECT
Simulation

3ns 
lifetime

PROSPECT
Simulation
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ML Techniques 

• Sparse convolutional neural networks are used to identify patterns 
in the energy deposition of various particles for particle 
discrimination

• PyTorch Lightning ML framework used for quick start to scalable 
multithreaded / GPU friendly code 

• Spconv sparse convolutional library for pytorch
• Simulated gammas, electrons, positrons between 0-9 MeV 

randomly distributed within the detector

https://pytorch-lightning.readthedocs.io/en/stable/
https://github.com/traveller59/spconv


2020

Particle Classification ML Architecture

• Sparse CNN -> linear

11x14x300 11x14x252 12x9x158 10x7x64 4480 116 3

conv 1x1 conv 3x3 conv 3x3

flatten

Dense layers
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Best Trial Results 
Best trial found after hyperparameter optimization ( ~ 
100 trials)

Used Optuna optimization framework
Hyperparameters tuned: 
● number of convolutional layers 
● number of linear layers 
● number of output feature planes 
● kernel size 

Full Energy Range

https://optuna.readthedocs.io/en/stable/
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Best Trial Results Full Energy Range
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Summary and Future work
• First application of machine learning methods to PROSPECT data

• Positrons within PROSPECT can be distinguished from gammas 
and electrons with up to 80% accuracy using sparse CNNs based 
on simulated waveform data
– More work needs to be done to understand the physical signatures and if 

it is learning artifacts in the simulation
• This new method for positron ID could be incorporated into the 

existing analysis in order to improve background suppression 
• Future work:

– Try training on / classification of real pulse data from calibration runs 
– Incorporate sparse CNN information into classification of IBD candidates 
– Improve classification by utilizing image segmentation to identify different 

particles within a single event
– Improve light simulation for more realistic simulated pulses
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ORNL Group
• Dr. Alfredo Galindo-Uribarri

– uribarri@ornl.gov
• Dr. Andrea Delgado

– delgadoa@ornl.gov
• Corey Gilbert

– gilbertce@ornl.gov
• Xiaobin Lu

– xlu21@vols.utk.edu

(ML Project 2,3) (ML Project 1)

• Rosa Luz Zamora Peinado
– rzamorap@vols.utk.edu

• Diego Venegas Vargas
– dvenega1@vols.utk.edu 

• Blaine Heffron
– bheffron@vols.utk.edu

(ML Project 4) (ML Project 4)

• Adriana Ghiozzi
– ghiozziag@ornl.gov



2626

Sterile Neutrino Oscillation 
Relative Spectrum Measurement
relative measurement of L/E and spectral shape distortions

unoscillated spectrum oscillated spectrum

Simulations
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Reactor Antineutrino Anomaly

• What is the nature of the bump?
– Is it an incorrect modeling of the fission products?
– Are all of them responsible or only one?
– A. Hayes, J. Friar, G. Garvey, D. Ibeling, G. Jungman,T. Kawano, and R. Mills, Phys. Rev. D 92, 033015 (2015).
– Y. Gebre, B. Littlejohn, and P. Surukuchi, Phys. Rev. D 97, 013003 (2018).

• Total absorption spectrometry has been used in order to investigate
both the flux deficit and the bump.
– M. Wolińska-Cichocka,K.Rykaczewski,A.Fijałkowska,M.Karny,R.Grzywacz,C.Gross,J. Johnson, B. Rasco, E. Zganjar, Nuclear Data 

Sheets 120 (2013) 22, ISSN 0090-3752,URL〈http://www.sciencedirect.com/science/article/pii/S0090375214004487〉
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PSD Parameter

• 𝑄!"#$= integrated charge from 40 ns to 120 ns after the leading-
edge half-height

• 𝑄%&$$= integrated charge 12 ns before to 120 ns after of  the 
leading-edge half-height

• 𝑃𝑆𝐷 = '%&'(
')*((
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IBD Cut selection Description

• Time topology cuts:
– (1) Delayed capture must occur within 100 µs of the prompt ionization
– (2) Multiple hits in the prompt cluster must occur within 5 ns to reject slower-

moving neutron recoil events
– (3) Events must be isolated from other neutron recoils or captures in a ±250 µs 

window, to reject multi-neutron spallation showers

• Spatial topology cuts:
– (4) The prompt and delayed signals must occur close to each other
– (5) Multiple segment hits in the prompt signal must be distributed over a 

compact volume
– (6) Events occurring outside the inner fiducial volume are vetoed
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Simulated distributions 


