Algebraic approach to scattering amplitudes

Cristhiam Lopez-Arcos

5th Colombian Meeting in High Energy Physics
Online, December the 1st of 2020

Based on collaborations: 1907.12154 [hep-th], 2011.09528 [hep-th]

Contents

Introduction

Contents

Introduction
L_{∞}-algebras

Contents

Introduction
L_{∞}-algebras

BV formalism

Contents

Introduction
L_{∞}-algebras
BV formalism
BV formalism and L_{∞}-algebras

Contents

Introduction
L_{∞}-algebras
BV formalism
BV formalism and L_{∞}-algebras
L_{∞}-algebras and scattering amplitudes

Contents

Introduction
L_{∞}-algebras
BV formalism
BV formalism and L_{∞}-algebras
L_{∞}-algebras and scattering amplitudes
Examples

Contents

Introduction
L_{∞}-algebras
BV formalism

BV formalism and L_{∞}-algebras
L_{∞}-algebras and scattering amplitudes

Examples

Conclusions

Introduction

- L_{∞}-algebras were invented around the 1950's Stasheff

Introduction

- L_{∞}-algebras were invented around the 1950's Stasheff
- Physics appearance in string field theory in 1989 Zwiebach

Introduction

- L_{∞}-algebras were invented around the 1950's Stasheff
- Physics appearance in string field theory in 1989 Zwiebach
- Underlying structure of the Batalin-Vilkovisky (BV) formalism

Introduction

- L_{∞}-algebras were invented around the 1950's Stasheff
- Physics appearance in string field theory in 1989 Zwiebach
- Underlying structure of the Batalin-Vilkovisky (BV) formalism
- Applied to field theory in 2017 Hohm and Zwiebach

Introduction

- L_{∞}-algebras were invented around the 1950's Stasheff
- Physics appearance in string field theory in 1989 Zwiebach
- Underlying structure of the Batalin-Vilkovisky (BV) formalism
- Applied to field theory in 2017 Hohm and Zwiebach
- Application scattering amplitudes in 2019 Macrelli et al

Introduction

- L_{∞}-algebras were invented around the 1950's Stasheff
- Physics appearance in string field theory in 1989 Zwiebach
- Underlying structure of the Batalin-Vilkovisky (BV) formalism
- Applied to field theory in 2017 Hohm and Zwiebach
- Application scattering amplitudes in 2019 Macrelli et al
- Relation to the perturbiuner expansion in 2019

L_{∞}-algebras

Remembering a Lie algebras, vector space with a product

$$
\left[\left[T^{i}, T^{j}\right], T^{k}\right]+\left[\left[T^{k}, T^{i}\right], T^{j}\right]+\left[\left[T^{j}, T^{k}\right], T^{i}\right]=0
$$

L_{∞}-algebras

Remembering a Lie algebras, vector space with a product

$$
\left[\left[T^{i}, T^{j}\right], T^{k}\right]+\left[\left[T^{k}, T^{i}\right], T^{j}\right]+\left[\left[T^{j}, T^{k}\right], T^{i}\right]=0
$$

renaming $T^{i} \rightarrow a_{i}$ and $[,] \rightarrow l_{2}$

$$
l_{2}\left(l_{2}\left(a_{i}, a_{j}\right), a_{k}\right)+l_{2}\left(l_{2}\left(a_{k}, a_{i}\right), a_{j}\right)+l_{2}\left(l_{2}\left(a_{j}, a_{k}\right), a_{i}\right)=0
$$

L_{∞}-algebras

Remembering a Lie algebras, vector space with a product

$$
\left[\left[T^{i}, T^{j}\right], T^{k}\right]+\left[\left[T^{k}, T^{i}\right], T^{j}\right]+\left[\left[T^{j}, T^{k}\right], T^{i}\right]=0
$$

renaming $T^{i} \rightarrow a_{i}$ and $[,] \rightarrow l_{2}$
$l_{2}\left(l_{2}\left(a_{i}, a_{j}\right), a_{k}\right)+l_{2}\left(l_{2}\left(a_{k}, a_{i}\right), a_{j}\right)+l_{2}\left(l_{2}\left(a_{j}, a_{k}\right), a_{i}\right)=0$

Adding a derivative $l_{1}\left(a_{i}\right)$ we have a differential Lie Algebra DL-algebra

L_{∞}-algebras

Remembering a Lie algebras, vector space with a product

$$
\left[\left[T^{i}, T^{j}\right], T^{k}\right]+\left[\left[T^{k}, T^{i}\right], T^{j}\right]+\left[\left[T^{j}, T^{k}\right], T^{i}\right]=0
$$

renaming $T^{i} \rightarrow a_{i}$ and $[,] \rightarrow l_{2}$
$l_{2}\left(l_{2}\left(a_{i}, a_{j}\right), a_{k}\right)+l_{2}\left(l_{2}\left(a_{k}, a_{i}\right), a_{j}\right)+l_{2}\left(l_{2}\left(a_{j}, a_{k}\right), a_{i}\right)=0$

Adding a derivative $l_{1}\left(a_{i}\right)$ we have a differential Lie Algebra DL-algebra
If the vector space is graded we have a differential graded Lie algebra DGL-algebra

L_{∞}-algebras

Remembering a Lie algebras, vector space with a product

$$
\left[\left[T^{i}, T^{j}\right], T^{k}\right]+\left[\left[T^{k}, T^{i}\right], T^{j}\right]+\left[\left[T^{j}, T^{k}\right], T^{i}\right]=0
$$

renaming $T^{i} \rightarrow a_{i}$ and $[,] \rightarrow l_{2}$
$l_{2}\left(l_{2}\left(a_{i}, a_{j}\right), a_{k}\right)+l_{2}\left(l_{2}\left(a_{k}, a_{i}\right), a_{j}\right)+l_{2}\left(l_{2}\left(a_{j}, a_{k}\right), a_{i}\right)=0$

Adding a derivative $l_{1}\left(a_{i}\right)$ we have a differential Lie Algebra DL-algebra
If the vector space is graded we have a differential graded Lie algebra DGL-algebra
Now the a_{i} 's are the fields of the theory

L_{∞}-algebras

Remembering a Lie algebras, vector space with a product

$$
\left[\left[T^{i}, T^{j}\right], T^{k}\right]+\left[\left[T^{k}, T^{i}\right], T^{j}\right]+\left[\left[T^{j}, T^{k}\right], T^{i}\right]=0
$$

renaming $T^{i} \rightarrow a_{i}$ and $[,] \rightarrow l_{2}$
$l_{2}\left(l_{2}\left(a_{i}, a_{j}\right), a_{k}\right)+l_{2}\left(l_{2}\left(a_{k}, a_{i}\right), a_{j}\right)+l_{2}\left(l_{2}\left(a_{j}, a_{k}\right), a_{i}\right)=0$

Adding a derivative $l_{1}\left(a_{i}\right)$ we have a differential Lie Algebra DL-algebra
If the vector space is graded we have a differential graded Lie algebra DGL-algebra
Now the a_{i} 's are the fields of the theory
The grading for the space comes from the ghost number (BRST) and the products...

BV formalism

Off-shell BRST, antibracket formalism,...

BV formalism

Off-shell BRST, antibracket formalism,... gauge parameters \longrightarrow ghost fields (field content Φ^{A})

BV formalism

Off-shell BRST, antibracket formalism,...
gauge parameters \longrightarrow ghost fields (field content Φ^{A}) Introduce anti-fields doubling the field content: $\left(\Phi^{A}\right) \longrightarrow\left(\Phi^{A}, \Phi_{A}^{*}\right)$

BV formalism

Off-shell BRST, antibracket formalism,...
gauge parameters \longrightarrow ghost fields (field content Φ^{A}) Introduce anti-fields doubling the field content: $\left(\Phi^{A}\right) \longrightarrow\left(\Phi^{A}, \Phi_{A}^{*}\right)$
Antibracket of two general functionals $F\left[\Phi, \Phi^{*}\right]$ and $G\left[\Phi, \Phi^{*}\right]$ by

$$
(F, G)=F\left(\frac{\overleftarrow{\partial}}{\partial \Phi^{A}} \frac{\partial}{\partial \Phi_{A}^{*}}-\frac{\overleftarrow{\partial}}{\partial \Phi_{A}^{*}} \frac{\partial}{\partial \Phi^{A}}\right) G
$$

BV formalism

Off-shell BRST, antibracket formalism,...
gauge parameters \longrightarrow ghost fields (field content Φ^{A})
Introduce anti-fields doubling the field content:
$\left(\Phi^{A}\right) \longrightarrow\left(\Phi^{A}, \Phi_{A}^{*}\right)$
Antibracket of two general functionals $F\left[\Phi, \Phi^{*}\right]$ and $G\left[\Phi, \Phi^{*}\right]$ by

$$
(F, G)=F\left(\frac{\overleftarrow{\partial}}{\partial \Phi^{A}} \frac{\partial}{\partial \Phi_{A}^{*}}-\frac{\overleftarrow{\partial}}{\partial \Phi_{A}^{*}} \frac{\partial}{\partial \Phi^{A}}\right) G
$$

We want a particular functional: the action

BV formalism

The classical master action $S\left[\Phi, \Phi^{*}\right]$ must satisfy:

BV formalism

The classical master action $S\left[\Phi, \Phi^{*}\right]$ must satisfy:
1 Classical action for the fields

$$
S\left[\Phi, \Phi^{*}\right] \xrightarrow{\Phi^{*}=0} S_{\text {class }}
$$

BV formalism

The classical master action $S\left[\Phi, \Phi^{*}\right]$ must satisfy:
1 Classical action for the fields

$$
S\left[\Phi, \Phi^{*}\right] \xrightarrow{\Phi^{*}=0} S_{\text {class }}
$$

2 Classical master equation

$$
(S, S)=0
$$

BV formalism

The classical master action $S\left[\Phi, \Phi^{*}\right]$ must satisfy:
1 Classical action for the fields

$$
S\left[\Phi, \Phi^{*}\right] \xrightarrow{\Phi^{*}=0} S_{\text {class }}
$$

2 Classical master equation

$$
(S, S)=0
$$

BV nilpotent transformations

$$
\begin{aligned}
\delta_{\mathrm{BV}} \Phi^{A} & =-\left(S, \Phi^{A}\right)=\frac{\partial_{r} S}{\partial \Phi_{A}^{*}} \\
\delta_{\mathrm{BV}} \Phi_{A}^{*} & =-\left(S, \Phi_{A}^{*}\right)=-\frac{\partial_{r} S}{\partial \Phi^{A}}
\end{aligned}
$$

BV formalism and L_{∞}-algebras

Taking the field content as

$$
(A, \psi, c) \longrightarrow\left(A, \psi, c, A^{*}, \psi^{*}, c^{*}\right)
$$

BV formalism and L_{∞}-algebras

Taking the field content as
$(A, \psi, c) \longrightarrow\left(A, \psi, c, A^{*}, \psi^{*}, c^{*}\right)$
From the master action $S\left[A, \psi, c, A^{*}, \psi^{*}, c^{*}\right]$ we have the BV transformations

$$
\begin{aligned}
\delta_{\mathrm{BV}} c^{a} & =-\frac{1}{2} l_{2}(c, c)^{a}, \\
\delta_{\mathrm{BV}} A_{\mu}^{a} & =l_{1}(c)_{\mu}^{a}+l_{2}(A, c)_{\mu}^{a}+\frac{1}{2} l_{3}(A, A, c)_{\mu}^{a}+\frac{1}{2} l_{3}(\psi+\bar{\psi}, \psi+\bar{\psi}, c)_{\mu}^{a}+\frac{1}{2} l_{3}\left(c, c, A^{*}\right)_{\mu}^{a}, \\
\delta_{\mathrm{BV}} \psi^{i} & =l_{2}(\psi, c)^{i}+l_{3}(A, \psi, c)^{i}+l_{3}\left(c, c, \psi^{*}\right)^{i}, \\
\delta_{\mathrm{BV}} \bar{\psi}_{i} & =l_{2}(\bar{\psi}, c)_{i}+l_{3}(A, \bar{\psi}, c)_{i}+l_{3}\left(c, c, \bar{\psi}^{*}\right)_{i}, \\
\delta_{\mathrm{BV}} A_{\mu}^{* a} & =-l_{1}(A)_{\mu}^{a}-\frac{1}{2} l_{2}(A, A)_{\mu}^{a}-\frac{1}{2} l_{2}(\psi+\bar{\psi}, \psi+\bar{\psi})_{\mu}^{a}-l_{2}\left(c, A^{*}\right)_{\mu}^{a}+\cdots, \\
\delta_{\mathrm{BV}} \bar{\psi}_{i}^{*} & =-l_{1}(\psi+\bar{\psi})_{i}-l_{2}(A, \bar{\psi})_{i}-l_{2}\left(c, \bar{\psi}^{*}\right)_{i}+\cdots, \\
\delta_{\mathrm{BV}} \psi^{* i} & =-l_{1}(\psi+\bar{\psi})^{i}-l_{2}(A, \psi)^{i}-l_{2}\left(c, \psi^{*}\right)^{i}+\cdots, \\
\delta_{\mathrm{BV}} c^{* a} & =l_{1}\left(A^{*}\right)^{a}+l_{2}\left(A, A^{*}\right)^{a}-l_{2}\left(c, c^{*}\right)^{a}+l_{2}\left(\psi+\bar{\psi}, \bar{\psi}^{*}+\psi^{*}\right)^{a}+\cdots,
\end{aligned}
$$

BV formalism and L_{∞}-algebras

Taking the field content as
$(A, \psi, c) \longrightarrow\left(A, \psi, c, A^{*}, \psi^{*}, c^{*}\right)$
From the master action $S\left[A, \psi, c, A^{*}, \psi^{*}, c^{*}\right]$ we have the BV transformations

$$
\begin{aligned}
\delta_{\mathrm{BV}} a^{a} & =-\frac{1}{2} l_{2}(c, c)^{a}, \\
\delta_{\mathrm{BV}} A_{\mu}^{a} & =l_{1}(c)_{\mu}^{a}+l_{2}(A, c)_{\mu}^{a}+\frac{1}{2} l_{3}(A, A, c)_{\mu}^{a}+\frac{1}{2} l_{3}(\psi+\bar{\psi}, \psi+\bar{\psi}, c)_{\mu}^{a}+\frac{1}{2} l_{3}\left(c, c, A^{*}\right)_{\mu}^{a}, \\
\delta_{\mathrm{BV}} \psi^{i} & =l_{2}(\psi, c)^{i}+l_{3}(A, \psi, c)^{i}+l_{3}\left(c, c, \psi^{*}\right)^{i}, \\
\delta_{\mathrm{BV}} \bar{\psi}_{i} & =l_{2}(\bar{\psi}, c)_{i}+l_{3}(A, \bar{\psi}, c)_{i}+l_{3}\left(c, c, \bar{\psi}^{*}\right)_{i}, \\
\delta_{\mathrm{BV}} A_{\mu}^{* a} & =-l_{1}(A)_{\mu}^{a}-\frac{1}{2} l_{2}(A, A)_{\mu}^{a}-\frac{1}{2} l_{2}(\psi+\bar{\psi}, \psi+\bar{\psi})_{\mu}^{a}-l_{2}\left(c, A^{*}\right)_{\mu}^{a}+\cdots, \\
\delta_{\mathrm{BV}} \bar{\psi}_{i}^{*} & =-l_{1}(\psi+\bar{\psi})_{i}-l_{2}(A, \bar{\psi})_{i}-l_{2}\left(c, \bar{\psi}^{*}\right)_{i}+\cdots, \\
\delta_{\mathrm{BV}} \psi^{* i} & =-l_{1}(\psi+\bar{\psi})^{i}-l_{2}(A, \psi)^{i}-l_{2}\left(c, \psi^{*}\right)^{i}+\cdots, \\
\delta_{\mathrm{BV}} c^{* a} & =l_{1}\left(A^{*}\right)^{a}+l_{2}\left(A, A^{*}\right)^{a}-l_{2}\left(c, c^{*}\right)^{a}+l_{2}\left(\psi+\bar{\psi}, \bar{\psi}^{*}+\psi^{*}\right)^{a}+\cdots,
\end{aligned}
$$

and from the BV transformations the L_{∞}-algebra products

BV formalism and L_{∞}-algebras

Back to the graded vector field with elements x_{i}

BV formalism and L_{∞}-algebras

Back to the graded vector field with elements x_{i}
The equivalent of the Jacobi identity for an
L_{∞}-algebra
$\sum_{i=1}^{n}(-1)^{n-i} \sum_{\sigma \in \epsilon_{i, n-i}} \chi\left(\sigma ; x_{1}, \ldots, x_{n}\right) l_{n-i+1}\left(l_{i}\left(x_{\sigma(1)}, \ldots, x_{\sigma(i)}\right), x_{\sigma(i+1)}, \ldots, x_{\sigma(n)}\right)=0$

BV formalism and L_{∞}-algebras

Back to the graded vector field with elements x_{i}
The equivalent of the Jacobi identity for an
L_{∞}-algebra
$\sum_{i=1}^{n}(-1)^{n-i} \sum_{\sigma \in \epsilon_{i, n-i}} \chi\left(\sigma ; x_{1}, \ldots, x_{n}\right) l_{n-i+1}\left(l_{i}\left(x_{\sigma(1)}, \ldots, x_{\sigma(i)}\right), x_{\sigma(i+1)}, \ldots, x_{\sigma(n)}\right)=0$

Nilpotency of the BV transformations lead exactly to a L_{∞}-algebra!

BV formalism and L_{∞}-algebras

Back to the graded vector field with elements x_{i}
The equivalent of the Jacobi identity for an
L_{∞}-algebra
$\sum_{i=1}^{n}(-1)^{n-i} \sum_{\sigma \in \epsilon_{i, n-i}} x\left(\sigma ; x_{1}, \ldots, x_{n}\right) l_{n-i+1}\left(l_{i}\left(x_{\sigma(1)}, \ldots, x_{\sigma(i)}\right), x_{\sigma(i+1)}, \ldots, x_{\sigma(n)}\right)=0$

Nilpotency of the BV transformations lead exactly to a L_{∞}-algebra!
Calling the the physical fields a_{i} 's with degree 1 , we can recover the classical action (Maurer-Cartan)

$$
S_{\mathrm{MC}}[a]=\sum_{n \geq 1} \frac{1}{(n+1)!}\left\langle a, l_{n}(a, \ldots, a)\right\rangle
$$

L_{∞}-algebras and scattering amplitudes

Isomorphisms for L_{∞}-algebra are called quasi-isomorphisms

L_{∞}-algebras and scattering amplitudes

Isomorphisms for L_{∞}-algebra are called quasi-isomorphisms
There is a particular quasi-isomorphism:

$$
f: H^{\bullet}(L) \longrightarrow L
$$

L_{∞}-algebras and scattering amplitudes

Isomorphisms for L_{∞}-algebra are called quasi-isomorphisms
There is a particular quasi-isomorphism:

$$
f: H^{\bullet}(L) \longrightarrow L
$$

from the cohomology $\left(l_{1}(a)=0\right)$ to the algebra

L_{∞}-algebras and scattering amplitudes

Isomorphisms for L_{∞}-algebra are called quasi-isomorphisms
There is a particular quasi-isomorphism:

$$
f: H^{\bullet}(L) \longrightarrow L
$$

from the cohomology $\left(l_{1}(a)=0\right)$ to the algebra The elements in the cohomology are plane waves and due to to f :

$$
\left\{\begin{array}{c}
\text { plane } \\
\text { waves }
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { multi-particle } \\
\text { solutions }
\end{array}\right\}
$$

L_{∞}-algebras and scattering amplitudes

Isomorphisms for L_{∞}-algebra are called quasi-isomorphisms
There is a particular quasi-isomorphism:

$$
f: H^{\bullet}(L) \longrightarrow L
$$

from the cohomology $\left(l_{1}(a)=0\right)$ to the algebra The elements in the cohomology are plane waves and due to to f :

$$
\left\{\begin{array}{c}
\text { plane } \\
\text { waves }
\end{array}\right\} \rightarrow\left\{\begin{array}{c}
\text { multi-particle } \\
\text { solutions }
\end{array}\right\}
$$

Taking an infinite sum of plane waves, it give us the perturbiner expansion.

L_{∞}-algebras and scattering amplitudes

The construction of f is recursive and gives the Berends-Giele currents. e. g.

$$
A^{\prime \mu}=\sum_{i \geq 1} \mathcal{A}_{i}^{\mu} \mathrm{e}^{\mathrm{i} k_{i} \cdot x} T^{a_{i}} \longrightarrow A^{\mu}=\sum_{n \geq 1} \frac{1}{n!} f_{n}\left(A^{\prime}, \ldots, A^{\prime}\right)^{\mu}
$$

L_{∞}-algebras and scattering amplitudes

The construction of f is recursive and gives the Berends-Giele currents. e. g.
$A^{\prime \mu}=\sum_{i \geq 1} \mathcal{A}_{i}^{\mu} \mathrm{e}^{\mathrm{i} k_{i} \cdot x} T^{a_{i}} \longrightarrow A^{\mu}=\sum_{n \geq 1} \frac{1}{n!} f_{n}\left(A^{\prime}, \ldots, A^{\prime}\right)^{\mu}$
f endows the cohomology with a L_{∞} structure $\left(a^{\prime}, l_{k}^{\prime}\right)$

L_{∞}-algebras and scattering amplitudes

The construction of f is recursive and gives the Berends-Giele currents. e. g.

$$
A^{\prime \mu}=\sum_{i \geq 1} \mathcal{A}_{i}^{\mu} \mathrm{e}^{\mathrm{i} k_{i} \cdot x} T^{a_{i}} \longrightarrow A^{\mu}=\sum_{n \geq 1} \frac{1}{n!} f_{n}\left(A^{\prime}, \ldots, A^{\prime}\right)^{\mu}
$$

f endows the cohomology with a L_{∞} structure $\left(a^{\prime}, l_{k}^{\prime}\right)$ Since we have a L_{∞}-algebra in $H^{\bullet}(L)$ we have an action

$$
S_{\mathrm{MC}}^{\prime}\left[A^{\prime}\right]=\sum_{n \geq 2} \frac{1}{(n+1)!}\left\langle A^{\prime}, l_{n}^{\prime}\left(A^{\prime}, \ldots, A^{\prime}\right)\right\rangle
$$

L_{∞}-algebras and scattering amplitudes

The construction of f is recursive and gives the Berends-Giele currents. e. g.

$$
A^{\prime \mu}=\sum_{i \geq 1} \mathcal{A}_{i}^{\mu} \mathrm{e}^{\mathrm{i} k_{i} \cdot x} T^{a_{i}} \longrightarrow A^{\mu}=\sum_{n \geq 1} \frac{1}{n!} f_{n}\left(A^{\prime}, \ldots, A^{\prime}\right)^{\mu}
$$

f endows the cohomology with a L_{∞} structure $\left(a^{\prime}, l_{k}^{\prime}\right)$ Since we have a L_{∞}-algebra in $H^{\bullet}(L)$ we have an action

$$
S_{\mathrm{MC}}^{\prime}\left[A^{\prime}\right]=\sum_{n \geq 2} \frac{1}{(n+1)!}\left\langle A^{\prime}, l_{n}^{\prime}\left(A^{\prime}, \ldots, A^{\prime}\right)\right\rangle
$$

this action generates all the tree-level amplitudes

Examples

Yang-Mills

$$
A^{\mu}=\sum_{n \geq 1} \sum_{I \in \mathcal{W}_{n}} \mathcal{A}_{I}^{\mu} \mathrm{e}^{\mathrm{i} k_{I} \cdot x} T^{a_{I}}=\sum_{i \geq 1} \mathcal{A}_{i}^{\mu} \mathrm{e}^{\mathrm{i} k_{i} \cdot x} T^{a_{i}}+\sum_{i, j \geq 1} \mathcal{A}_{i j}^{\mu} \mathrm{e}^{\mathrm{i} k_{i j} \cdot x} T^{a_{i}} T^{a_{j}}+\cdots
$$

Examples

Yang-Mills

$$
A^{\mu}=\sum_{n \geq 1} \sum_{I \in \mathcal{W}_{n}} \mathcal{A}_{I}^{\mu} \mathrm{e}^{\mathrm{i} k_{I} \cdot x} T^{a_{I}}=\sum_{i \geq 1} \mathcal{A}_{i}^{\mu} \mathrm{e}^{\mathrm{i} k_{i} \cdot x} T^{a_{i}}+\sum_{i, j \geq 1} \mathcal{A}_{i j}^{\mu} \mathrm{e}^{\mathrm{i} k_{i j} \cdot x} T^{a_{i}} T^{a_{j}}+\cdots
$$

where

$$
\mathcal{A}_{I}^{\mu}=\frac{1}{s_{I}} \sum_{I=J K}\left\{\left(k_{K} \cdot \mathcal{A}_{J}\right) \mathcal{A}_{K}^{\mu}+\mathcal{A}_{J \nu} \mathcal{F}_{K}^{\mu \nu}-\left(k_{J} \cdot \mathcal{A}_{K}\right) \mathcal{A}_{J}^{\mu}-\mathcal{A}_{K \nu} \mathcal{F}_{J}^{\mu \nu}\right\}
$$

Examples

Yang-Mills

$$
A^{\mu}=\sum_{n \geq 1} \sum_{I \in \mathcal{W}_{n}} \mathcal{A}_{I}^{\mu} \mathrm{e}^{\mathrm{i} k_{I} \cdot x} T^{a_{I}}=\sum_{i \geq 1} \mathcal{A}_{i}^{\mu} \mathrm{e}^{\mathrm{i} k_{i} \cdot x} T^{a_{i}}+\sum_{i, j \geq 1} \mathcal{A}_{i j}^{\mu} \mathrm{e}^{\mathrm{i} k_{i j} \cdot x} T^{a_{i}} T^{a_{j}}+\cdots
$$

where

$$
\mathcal{A}_{I}^{\mu}=\frac{1}{s_{I}} \sum_{I=J K}\left\{\left(k_{K} \cdot \mathcal{A}_{J}\right) \mathcal{A}_{K}^{\mu}+\mathcal{A}_{J v} \mathcal{F}_{K}^{\mu \nu}-\left(k_{J} \cdot \mathcal{A}_{K}\right) \mathcal{A}_{J}^{\mu}-\mathcal{A}_{K \nu} \mathcal{F}_{J}^{\mu \nu}\right\}
$$

and

$$
\mathcal{F}_{I}^{\mu \nu}=k_{I}^{\mu} \mathcal{A}_{I}^{v}-k_{I}^{v} \mathcal{A}_{I}^{\mu}-\sum_{I=J K}\left(\mathcal{A}_{J}^{\mu} \mathcal{A}_{K}^{v}-\mathcal{A}_{K}^{\mu} \mathcal{A}_{J}^{v}\right)
$$

Examples

Yang-Mills

$$
A^{\mu}=\sum_{n \geq 1} \sum_{I \in \mathcal{W}_{n}} \mathcal{A}_{I}^{\mu} \mathrm{e}^{\mathrm{i} k_{I} \cdot x} T^{a_{I}}=\sum_{i \geq 1} \mathcal{A}_{i}^{\mu} \mathrm{e}^{\mathrm{i} k_{i} \cdot x} T^{a_{i}}+\sum_{i, j \geq 1} \mathcal{A}_{i j}^{\mu} \mathrm{e}^{\mathrm{i} k_{i j} \cdot x} T^{a_{i}} T^{a_{j}}+\cdots
$$

where

$$
\mathcal{A}_{I}^{\mu}=\frac{1}{s_{I}} \sum_{I=J K}\left\{\left(k_{K} \cdot \mathcal{A}_{J}\right) \mathcal{A}_{K}^{\mu}+\mathcal{A}_{J \nu} \mathcal{F}_{K}^{\mu v}-\left(k_{J} \cdot \mathcal{A}_{K}\right) \mathcal{A}_{J}^{\mu}-\mathcal{A}_{K \nu} \mathcal{F}_{J}^{\mu \nu}\right\}
$$

and

$$
\mathcal{F}_{I}^{\mu \nu}=k_{I}^{\mu} \mathcal{A}_{I}^{v}-k_{I}^{v} \mathcal{A}_{I}^{\mu}-\sum_{I=J K}\left(\mathcal{A}_{J}^{\mu} \mathcal{A}_{K}^{v}-\mathcal{A}_{K}^{\mu} \mathcal{A}_{J}^{v}\right)
$$

Amplitudes

$$
S_{\mathrm{MC}}^{\prime}\left[A^{\prime}\right]=\sum_{n \geq 3} \frac{1}{n} \sum_{i \geq 1} \sum_{I \in \mathcal{W}_{n-1}} \delta\left(k_{i I}\right) s_{I} \mathcal{A}_{i} \cdot \mathcal{A}_{I} \operatorname{tr}\left(T^{a_{i I}}\right)
$$

Examples
 QCD

$$
\begin{aligned}
\mathcal{A}_{P}^{a \mu} & =\frac{1}{s_{P}} \mathcal{J}_{P}^{a \mu}+\frac{\mathrm{i}}{s_{P}} \sum_{P=Q \cup R}\left\{-\mathrm{i} \tilde{f}_{b c}^{a}\left(k_{Q} \cdot \mathcal{A}_{R}^{b}\right) \mathcal{A}_{Q}^{c \mu}+\mathcal{A}_{Q v}^{b} \mathcal{F}_{R}^{c v \mu}\right\} \\
\mathcal{J}_{P}^{a \mu} & =\sum_{P=Q \cup R} \bar{\Psi}_{Q i} \gamma^{\mu}\left(T^{a}\right)^{i}{ }_{j} \Psi_{R^{\prime}}^{j} \\
\mathcal{F}_{P}^{a \mu \nu} & =\mathrm{i} k_{P}^{\mu} \mathcal{A}_{P}^{a v}-\mathrm{i} k_{P}^{v} \mathcal{A}_{P}^{a \mu}+\mathrm{i} \tilde{f}_{b c}^{a} \sum_{P=Q \cup R} \mathcal{A}_{Q}^{b \mu} \mathcal{A}_{R}^{c v} \\
\Psi_{P}^{i} & =-\left(\frac{k_{P}+m}{s_{P}-m^{2}}\right) \sum_{P=Q \cup R} \mathcal{A}_{Q}^{a}\left(T_{a}\right)^{i}{ }_{j} \Psi_{R^{\prime}}^{j} \\
\bar{\Psi}_{P i} & =-\sum_{P=Q \cup R} \bar{\Psi}_{R j}\left(T_{a}\right)^{j}{ }_{i} \mathcal{A}_{Q}^{a}\left(\frac{\not k_{P}-m}{s_{P}-m^{2}}\right)
\end{aligned}
$$

Examples
 QCD

$$
\begin{aligned}
\mathcal{A}_{P}^{a \mu} & =\frac{1}{s_{P}} \mathcal{f}_{P}^{a \mu}+\frac{\mathrm{i}}{s_{P}} \sum_{P=Q \cup R}\left\{-\mathrm{i} \tilde{f}_{b c}^{a}\left(k_{Q} \cdot \mathcal{A}_{R}^{b}\right) \mathcal{A}_{Q}^{c \mu}+\mathcal{A}_{Q v}^{b} \mathcal{F}_{R}^{c v \mu}\right\}, \\
\mathcal{J}_{P}^{a \mu} & =\sum_{P=Q \cup R} \bar{\Psi}_{Q i} \gamma^{\mu}\left(T^{a}\right)_{j}^{i}{ }_{j}^{j} \Psi_{R^{\prime}}^{j} \\
\mathcal{F}_{P}^{a \mu \nu} & =\mathrm{i} k_{P}^{\mu} \mathcal{A}_{P}^{a \nu}-\mathrm{i} k_{P}^{v} \mathcal{A}_{P}^{a \mu}+\mathrm{i} \tilde{f}_{b c}^{a} \sum_{P=Q \cup R} \mathcal{A}_{Q}^{b \mu} \mathcal{A}_{R}^{c \nu}, \\
\Psi_{P}^{i} & =-\left(\frac{k_{P}+m}{s_{P}-m^{2}}\right) \sum_{P=Q \cup R} \mathcal{A}_{Q}^{a}\left(T_{a}\right)_{j}^{i} \Psi_{R^{\prime}}^{j} \\
\bar{\Psi}_{P i} & =-\sum_{P=Q \cup R} \bar{\Psi}_{R j}\left(T_{a}\right)_{i}^{j} \mathcal{A}_{Q}^{a}\left(\frac{k_{P}-m}{s_{P}-m^{2}}\right)
\end{aligned}
$$

Amplitudes

$$
\begin{aligned}
S_{\mathrm{MC}}^{\prime \mathrm{QCD}}= & \sum_{n \geq 1} \sum_{\substack{P \in \mathcal{O} \mathcal{W}_{n} \\
P=Q \cup R}}\left\{\tilde{f}_{a b c}\left(\left(k_{Q} \cdot \mathcal{A}_{R}^{b}\right)\left(\mathcal{A}_{Q}^{c} \cdot \mathcal{A}_{p}^{a}\right)+\mathcal{A}_{Q v}^{b} \mathcal{A}_{p \mu}^{a} \mathcal{F}_{R}^{\mu \nu c}\right)\right. \\
& \left.+\bar{\Psi}_{Q i} \mathcal{A}_{p}^{a}\left(T^{a}\right)^{i}{ }_{j}^{i} \Psi_{R}^{j}-\bar{\Psi}_{R i} \mathcal{A}_{Q}^{a}\left(T_{a}\right)_{j}^{i} \Psi_{p}^{j}-\bar{\Psi}_{p i} \mathcal{A}_{Q}^{a}\left(T_{a}\right)^{i}{ }_{j} \Psi_{R}^{j}\right\}
\end{aligned}
$$

Conclusions

- Deeper knowledge about the structure of scattering amplitudes (relations, identities)

Conclusions

- Deeper knowledge about the structure of scattering amplitudes (relations, identities)
- Dyck localisation for flavours from single flavoured action

Conclusions

- Deeper knowledge about the structure of scattering amplitudes (relations, identities)
- Dyck localisation for flavours from single flavoured action
- Closed expressions for dressed propagators in a background

Conclusions

- Deeper knowledge about the structure of scattering amplitudes (relations, identities)
- Dyck localisation for flavours from single flavoured action
- Closed expressions for dressed propagators in a background
- Application to colour-kinematics

Conclusions

- Deeper knowledge about the structure of scattering amplitudes (relations, identities)
- Dyck localisation for flavours from single flavoured action
- Closed expressions for dressed propagators in a background
- Application to colour-kinematics
- Loop case (algebraic and mixed approach)

Conclusions

- Deeper knowledge about the structure of scattering amplitudes (relations, identities)
- Dyck localisation for flavours from single flavoured action
- Closed expressions for dressed propagators in a background
- Application to colour-kinematics
- Loop case (algebraic and mixed approach)
- Associahedron, Amplituhedron,...

Thanks for your attention!

