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Why non-linear trajectories?

Regge Trajectories

Figure: Regge Trajectory

Regge trajectories are a systematic form to
organize hadronic states in terms of their
quantum numbers. We will focus on the
radial trajectories, which can be generically
written as

M2 = a(n + b)ν .

These sort of trajectories come naturally in
potential models, Bethe-Salpeter equation
analysis and other effective approaches (See
Anisovich’s nice book!). These objects also
provide a tool to test confimenement in
effective models for hadrons.
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Why non-linear trajectories

Important Remarks coming from the experimental data:

Light hadron case:

Linearity (ν = 1) works (R2 = 0.999) for light (unflavored) meson spectra.

The mass gap between states in the trajectory for light hadrons seems to be
constant.

Flavored and heavy Hadrons case:

Adding s-quarks will cause deviations from linearity (Gershtein et al., 2006).

For heavy quarkonia, linear trajectories do not have the same accuracy, but
they are still a good approach.

The mass gap between the ground state and the first excitation in heavy
quarkonia is bigger than the gap between higher excitations.

Linearity emerges in the high excitation number limit.

Our Hadronic lab
We can observe this phenomenological landscape in the isovector meson family
containing ρ, ω, φ, J/ψ, and Υ mesons.
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Some examples: Isovector IG JPC = 0− (1−−)
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Figure: M2 vs n for isovector mesons (ω, φ, ψ and Υ). Dots represent experimental data
(PDG).

M. A. Mart́ın Contreras (IFA–UV) Holographic Bottom-up Non-linear Trajectories 5th COM-HEP-2020 5 / 38



Non-linearity Hypothesis

Hypothesis

Linearity is connected with the hadron constituent mass: when constituent mass
raises, linearity ceases. The linear case appears when constituent quark masses are
supposed to be zero, i.e., they are small enough compared with the meson mass.

From Bethe-Salpeter (Afonin and Pusenkov, 2014; J. K. Chen, 2018) we can write
the trajectory as

(Mn −mq1 −mq2 )2 = a(n + b).

When the limit mq1,2→∞ (as in heavy quarkonium), the trajectory acquires a
generic non-linear form:

M2
n ∝ n2/3.

Also in heavy-light systems, non-linearity is expected (J. K. Chen, 2018).

Our goal is how to translate this hypothesis into a holographic bottom-up
language.
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AdS and Confinement

AdS/CFT correspondence original ideas
deal with the duality between a
conformal FT and a gravity theory.

QCD is not a conformal theory
(Oops!).

Non-conformality is translated into the
existence of confinement: for some
energies, hadrons are bounded. For
others, they break apart.

Therefore, one evidence of the presence of confinement is the Regge Trajectories.
These objects inherit the stringy behavior from the strong interaction ancient
times. This feature is recovered in holographic QCD.

How do we include confinement into AdS/CFT?

Just ”break” the conformal invariance by introducing an energy scale. In our
particular case, this scale defines the Regge slope.

This is why we study Regge trajectories in AdS/QCD!
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Bottom-up and Confinement

How is confinement realized in bottom-up models?

In the particular bottom-up case, confinement is realized via many approaches,
roughly summarized as

explicitly, by introducing a cutoff to the AdS space. This is the hardwall
model (Braga and Boshi-Filho, 2005, Polchinski-Strassler 2006).

softly by introducing a smooth quadratic and static dilaton field (Karch et.
al. 2006).

mixing both approaches: a UV cutoff and a static and quadratic dilaton
(Braga, M.A. Martin and Diles, 2014).

deforming AdS geometry (Forkel, 2006; Capossoli et al., 2020).

These methods are just the tip of the iceberg! We have other proposals,
including dynamical dilatons in fixed AdS backgrounds, interpolating dilatons,
dynamical AdS-like backgrounds, et cetera.
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General Bottom-up Algorithm

AdS-like Background

dS2 =
R2

z2
eh(z)

[
dz2 + ηµν dx

µ dxν
]

with R defined as the AdS radius and h(z) a geometric deformation.

General Action with minimal coupling

ISWM =

∫
d5x
√
−g e−Φ(z) LHadron,

with Φ(z) defined as a static dilaton field, responsible for inducing the conformal
symmetry breaking, i.e, confinement. The lagrangian LHadron has the information
about the bulk field dual to hadrons.

M. A. Mart́ın Contreras (IFA–UV) Holographic Bottom-up Non-linear Trajectories 5th COM-HEP-2020 9 / 38



General Bottom-up Algorithm

Holographic Potential

The action written above defines a set of equation of motion for the bulk fields
that, in general, has a Schrödinge-like form:

−ψ′′(z) + V (z)ψ(z) = M2
n ψ(z),

where V (z) is the holographic potential written in terms of the deformation and
the dilaton. In the case of p−form bulk fields as follows:

V (z) =
1

4
B ′(z)2 − 1

2
B ′′(z) +

M2
5 R2

z2
eh(z), (1)

with B(z) = Φ(z) + β [logR
z + 1

2h(z)], M5 is the bulk mass associated to ψ(z) and
β = −(3− 2 p). Latter we will connect β with the hadronic (integer) spin.

In our particular case, since we want to deal with no geometric deformations, we
will fix h(z) = 0. This is the case of the so-called softwall-like models (Karch et
al. 2006).
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General Bottom-up Algorithm

Holographic Regge Trajectories

Regge trajectories will emerge as the eigenvalue spectrum associated to the
Sturm-Liouville problem defined by V (z):

M2
n = A (n + B)ν ,

where A is an energy scale defined by the dilaton and/or deformation, B carries
information about the hadronic angular momentum, and ν measures linearity. If
the deformations and dilatons are quadratic at the high-z limit, the out-coming
trajectory will be linear This is supported by WKB analysis.
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Hadronic Identity: how we constuct hadrons in bottom-up
holographic QCD

Hadrons are characterized by the scaling dimension of the boundary operator Ô
that creates them. This quantity is fixed to match the bulk field conformal
dimension, ∆. According to the original AdS/CFT, the bulk mass M5 carries the
information ∆ as follows:

q q̄ and non-q q̄states:

M2
5 R2 = (∆− S)(∆ + S − 4)

Baryons of spin 1/2 with ∆ = 3/2:

m5 = ∆ + 2.

Thus, the bulk mass defines the hadronic identity of the state at hand. For
example, for mesons:

Ô = q̄(x) q(x) → ∆ = 3, thus: M2
5 R2 = (3− S)(S − 1).
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Hadronic Identity

Scalar hadrons Vector hadrons

(nQ)(mG) ∆ (nQ)(mG) ∆

(2Q) 3 (2Q) 3
(2G) 4 (2Q)(1G) 5

(2Q)(1G) 5 (4Q) or (3G) 6
(4Q) 6 (2Q)(2G) 7

(2Q)(2G) 7 (4Q)(1G) 8
(4Q)(1G) or (4G) 8 (6Q) or (2Q)(3G) 9
(6Q) or (2Q)(3G) 9 (5G) or (4Q)(2G) 10

Table: Possible hadronic states composed by n quarks (or antiquarks) and m gluons and
their conformal dimensions.
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Holographic algorithm: a summary

The road so far:
Define a geometry background, deformations and dilaton field.

Define an action for the bulk fields dual to hadronic states.

Obtain equations of motion.

Solve the associated Sturm-Liouville problem (Boundary Value Problem).

Find the mass spectrum as the eigenvalues of the BVP.

Evaluate the Regge Trajectory.
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Example: Holographic potential in SWM for Vector
Mesons

In the case of vector mesons, fix M2
5 R2 = 0, β = −1 and ∆ = 3. Thus:

From the action (Karch et al., 2006):

I = − 1

4 g2
5

∫
d5x
√
−g e−κ

2 z2

F 2
2 ,

with F2 = d A1, we obtain the
following potential and spectrum:

V (z) =
3

4 z2
+ κ4 z2

M2
n = 4κ2(n + 1).

Notice that the trajectory depends
on the the energy scale, and
therefore it is flavor-dependent.
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Figure: Holographic potential for vector
mesons, along with the ground state and
the first two excited states.
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Non-quadratic Dilaton

Our proposal

In order to induce non-linear Regge Trajectories we define

Φ(z) = (κ z)2−α

as a deformation of softwall model (quadratic) dilaton field.

Holographic potential for vector hadrons (β = −1)

This dilaton defines the following potential:

V (z , κ, α) =
3

4z2
− 1

2
α2 κ2 (κ z)−α +

1

4
α2 κ2(κ z)2−2α

+
3

2
ακ2 (κ z)−α − κ2(κ z)−α − ακ2 (κ z)2−2α

+ κ2 (κ z)2−2α +
κ

z
(κ z)1−α − ακ

2 z
(κ z)1−α +

M2
5 (∆)R2

z2
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Non-quadratic dilaton

Initial Parameters
κ: sets the energy scale for the trajectory. It is flavor dependent.

α: runs with the quark constituent mass. Heavier hadrons will have bigger
deviations from linearity in their trajectories.

Our ”playground”

We will prove this approach with the isovector meson family (ω, φ, J/ψ, and Υ)
labeled as IG (JPC ) = 0−(1−−).
We do not analyze ρ mesons, which is the lightest isovector, since it is described
in the usual softwall model (Karch et al., 2006). For us, this case implies α = 0.
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Light unflavored and flavored Isovector Fitting

ω with α = 0.04 and κ = 498 MeV
n MExp (MeV) MTh (MeV) R. E. (%)
1 782.65± 0.12 981.43 25.4
2 1400− 1450 1374 3.6
3 1670± 30 1674 0.25
4 1960± 25 1967 1.7
5 2290± 20 2149 6.2
M2

n = 0.9514(0.012 + n)0.9798 with R2 = 0.999

φ with α = 0.07 and κ = 585 MeV
n MExp (MeV) MTh (MeV) R. E. (%)
1 1019.461± 0.016 1139.43 11.8
2 1698± 20 1583 5.8
3 2135± 8± 9 1921 10
M2

n = 1.268(0.0244 + n)0.9650 with R2 = 0.999

Table: Summary of results for heavy isovector radial mesonic states considered in this
work. Experimental results are read from PDG.
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Heavy Isovector Fitting

ψ with α = 0.54 and κ = 2150 MeV
n MExp (MeV) MTh (MeV) R. E. (%)
1 3096.916± 0.011 3077.09 0.61
2 3686.109± 0.012 3689.62 0.1
3 4039± 1 4137.5 2.44
4 4421± 4 4499.4 1.77

M2
n = 8.07(0.287 + n)0.6315 with R2 = 0.999

Υ with α = 0.863 and κ = 11209 MeV
n MExp (MeV) MTh (MeV) R. E. (%)
1 9460.3± 0.26 9438.5 0.23
2 10023.26± 0.32 9923.32 0.78
3 10355± 0.5 10277.2 0.75
4 10579.4± 1.2 10558.6 0.19
5 10889.9+3.2

−2.6 10793.5 0.88
6 10992.9+10.0

−3.1 10995.7 0.03
M2

n = 76.511(0.901 + n)0.2369 with R2 = 0.999

Table: Summary of results for light isovector radial mesonic states considered in this
work. Experimental results are read from PDG.
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Non-linear fitting

The non-quadratic approach induces a running of the parameters κ and α in terms
of the inner mesonic structure, parametrized by the average constituent mass m̄.
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Figure: Running of κ and α in terms of m̄.

where for mesons we have

m̄(q1, q2) =
1

2
(mq1 + mq2 ) .
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Running of α and κ with m̄

Methodology

This specific running allows us to extend this model to other hadronic species by
using a particular choice of m̄ as the input to read off the associated value of κ
and α.
Then, we use these new data set and the scaling dimension ∆ of the operator that
creates such states to feed up the algorithm in order to get the associated mass
spectrum.
Recall that the hadronic identity for vector states is given by:

M2
5 R2 = (∆− 1)(∆− 3)

Testing our model

We will use this idea to explore the mass spectrum of vector kaons and heavy-light
mesons (B and D systems).
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Vector Kaons

Vector kaons are mesonic states labeled by I (JP) = 1/2(1−), with S = ±1 and
C = B = 0 and ∆ = 3. Also we define

m̄K∗ =
ms + md

2
, (2)

with ms = 0.486 and md = mu = 0.336 GeV. The numerical results are
summarized in the following table

K∗ with m̄ = 413 MeV, α = 0.055, and κ = 531.24 MeV

n State MExp (MeV) MTh (MeV) R. E. (%)

1 K∗(892) 895.55± 0.8 1038.4 16.2
2 K∗(1410) 1414± 15 1451.0 2.6
3 K∗(1680) 1718± 18 1754.5 2.1

Experimental Linear R. T.: M2 = 1.075(−0.2157 + n) with R2 = 0.9992.

Experimental Non-Linear R. T.: M2 = 1.157(−0.6102 + n)0.718 with R2 = 1.

Theoretical Non-Linear R. T.: M2 = 1.175(−0.0911 + n)0.902 with R2 = 1.

Table: Summary of results for the vector kaon K∗ radial states. The last column is the
relative error per state. Experimental results are read from PDG

.
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Vector Heavy-light mesons

These mesons are labeled as I (JP) = 1/2(1−), with ∆ = 3. The average
constituent mass is

m̄qQ =
mq + mQ

2
,

with mu = md = 336 MeV, ms = 0.486 MeV, mc = 1550 MeV, and mb = 4730
MeV. The numerical results are summarized as:

State q1 q2 m̄ (MeV) κ (MeV) α MExp (MeV) MTh (MeV) R. E. (%)

K∗(782) d s̄ 413 531.24 0.055 895.55± 0.8 1038.4 16.2
D∗0(2007) c ū 943 1070.8 0.261 2006.85± 0.05 1902.5 5.20
D+0(2010) c d̄ 945 1073.6 0.262 2010.26± 0.05 1906.4 5.16

D∗+
s c s̄ 1018 1179.1 0.296 2112.2± 0.4 2051.7 2.86

B∗+ u b̄ 2533 4681.2 0.800 5324.70± 0.22 4561.2 14.3
B∗0 d b̄ 2535 4687.3 0.801 5324.70± 0.22 4564.4 14.27
B∗0
s s b̄ 2608 4901.2 0.809 5415+1.8

−1.5 4683.0 13.52

Table: Summary of results for vector heavy-light mesonic states contrasting our
theoretical results with the available experimental data. The last column is the relative
error per state. Experimental results are read from PDG. Although D∗+

s has not been
fully identified, their decay modes are consistent with JP = 1−. See PDG.
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Bonus: Non-q q̄ states

Another interesting test
We also can study non-q q̄ states and test which structure works better from holographic
grounds. We will focus on the description of tetraquarks in the context of multiquark
and gluonic excitation models. (See Bambrilla et al. nice review, 2014).

Average constituent mass parametrizations
Gluonic excitations and multiquark states can be summarized in a single parametrization
in terms of the number of constituents N per state:

m̄non-qq̄ =
N∑
i=1

(Pquark
i m̄qi + Pmeson

i mmesoni + Pgluon
i mgluoni )

1 =
N∑
i=1

(Pquark
i + Pmeson

i + Pgluon
i ),

To switch between models consider the following:

Multiquark states: take Pgluon
i = 0.

Gluonic excitations: take
Pgluon
i 6= 0.
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Bonus: Non-q q̄ states

Non-q q̄ taxonomy

Multi-quark states:

Diquarks.
Hadroquarkonium.
Hadronic molecule.

Gluonic excitations:

Hybrid vector mesons.

Non-q q̄ candidates (PDG)

We will analyze tetraquark
candidates split into:

Multiquark states:

Heavy sector: ZC , ZB , and ψ
states.

Gluonic excitations:

Light sector: π1 states.
Heavy sector: ZC and ZB

states.

Methodology

We will test each non-q q̄ state with our model by using m̄ as entry to the κ and
α curves, and then computing the corresponding mass spectrum. After that, we
will compare with the experimental data.
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Bonus: Tetraquarks as Multi-quark states

Holographic spectrum Non-q q̄ states

∆ = 6 and m̄diquark-antidiquark Multiquark state

α = 0.539 and κ = 2151 MeV IG (JCP ) = 1+(1+−) Zc mesons
n MTh (MeV) n State MExp (MeV) ∆ M (%)
1 4004.8 1 Zc (3900) 3887.2± 2.3 3.0
2 4384.9 2 Zc (4200) 4196+35

−32 4.5

3 4706.6 3 Zc (4430) 4478+15
−18 5.1

∆ = 6 and m̄hadronic molecule Multiquark state

α = 0.539 and κ = 2151 MeV IG (JCP ) = 1+(1+−) Zc mesons
n MTh (MeV) n State MExp (MeV) ∆ M (%)
1 3816.3 1 Zc (3900) 3887.2± 2.3 1.82
2 4213.9 2 Zc (4200) 4196+35

−32 0.43

3 4551.4 3 Zc (4430) 4478+15
−18 1.64

∆ = 6 and m̄Hadrocharmonium Multiquark state

α = 0.604 and κ = 2523 MeV IG (JCP ) = 0+(1−−) Y or ψ mesons
n MTh (MeV) n State MExp (MeV) ∆ M (%)
1 4228.3 1 ψ(4260) 4230± 8 0.25
2 4577.3 2 ψ(4360) 4368± 13 4.8
3 4871.8 3 ψ(4660) 4643± 9 4.9

∆ = 6 and m̄Hadronic Molecule Multiquark state

α = 0.538 and κ = 1548.7 MeV IG (JCP ) = 0+(1−−) Y or ψ mesons
n MTh (MeV) n State MExp (MeV) ∆ M (%)
1 40027.8 1 ψ(4260) 4230± 8 5.37
2 4383.1 2 ψ(4360) 4368± 13 0.35
3 4705.1 2 ψ(4360) 4643± 9 1.34
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Bonus: Tetraquarks as Multi-quark states

Holographic spectrum Non-q q̄ states

∆ = 6 and m̄hadronic molecule Multiquark state

α = 0.863 and κ = 11649 MeV IG (JCP ) = 1+(1+−) ZB mesons
n MTh (MeV) n State MExp (MeV) ∆ M (%)
1 10410.9 1 ZB (10610) 10607.2± 2 1.85
2 10669.3 2 ZB (10650) 10652.2± 1.5 0.16

Table: Summary of results for the set of non-q q̄ states considered in this work.
Experimental results are read from PDG.

Where we have used:

m̄diquark-Antidiquark = m̄c

m̄Hadrocharmonium =
1

2
mJ/ψ +

1

4
(m̄u + m̄d)

m̄hadronic molecule =
1

3
mJ/ψ +

2

3
mρ for ψ

m̄hadronic molecule = 0.283mJ/ψ + 0.717mρ for ZC

m̄hadronic molecule = 0.458mΥ(1S) + 0.542mρ for ZB

mJ/ψ = 3077.9 MeV, mΥ(1S) = 9460.3 MeV, and mρ = 770 MeV.
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Bonus: Tetraquarks as Gluonic Excitations States

Holographic spectrum Non-q q̄ states

∆ = 5 and m̄Hybrid Meson Gluonic excitation state

α = 0.0367 and κ = 488 MeV IG (JCP ) = 0−(1+−) π1 mesons
n MTh (MeV) n State MExp (MeV) ∆ M (%)
1 1351.7 1 π1(1400) 1354± 25 0.16
2 1646.6 2 π1(1600) 1660+15

−11 0.8
3 1901.7 3 π1(2015) 2014± 20± 16 5.58

∆ = 5 and m̄Hybrid meson Gluonic Excitation

α = 0.539 and κ = 2151 MeV IG (JCP ) = 1+(1+−) Zc mesons
n MTh (MeV) n State MExp (MeV) ∆ M (%)
1 3721.9 1 Zc (3900) 3887.2± 2.3 4.24
2 4156.4 2 Zc (4200) 4196+35

−32 0.94

3 4513.2 3 Zc (4430) 4478+15
−18 0.78

∆ = 7 and m̄Hybrid Meson Gluonic excitation state

α = 0.863 and κ = 11649 MeV IG (JCP ) = 1+(1+−) ZB mesons
n MTh (MeV) n State MExp (MeV) ∆ M (%)
1 10346.7 1 ZB (10610) 10607.2± 2 2.52
2 10696.6 2 ZB (10650) 10652.2± 1.5 0.42

Table: Summary of results for the set of non-q q̄ states considered in this work.
Experimental results are read from PDG.
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Bonus: Tetraquarks as Gluonic Excitations States

Where we have used:

m̄hybrid meson = Pq mq + Pq̄ mq̄ + PG mG , (3)

with the following probabilities:

Vector hybrid meson Pq Pq̄ PG

π1 0.497 0.497 6× 10−3

Zc 0.49 0.49 0.02
Zb 0.495 0.495 0.01

Table: Summary of coefficients fixed for each hybrid meson candidate.

Important Remark:

In the case of Zb we are considering two flux tubes instead one.
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Bonus: Tetraquark Test Results

Our results and conclusions
By looking the tables, and based on the small RMS criterion, we can conclude
that:

Constituent gluons are not so revelevant in order to define non-q ¯states.

ZC , ZB and ψ states are better described as hadronic molecules.

The hybrid meson descriptions fits well the π1 spectrum (RMS less than 5%).
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General Conclusions

Conclusions
The family of isovector mesons were fitted as non-linear Regge Trajectories.

This approach allows us to extend the model by extrapolation to other
hadronic vector species.

Holographic non-linear trajectories provide a good tool to describe mesonic
systems. The RMS error for fitting 27 mesonic states was near 13%,with the
with 15 parameters organized as:

Two parameters, κ and α, for each isovector meson family, i.e., ω, φ, J/Ψ and
Υ, implying eight in total.
One m̄ for the vector kaon K∗ system.
Six m̄ for each heavy-light vector meson considered, i.e., D∗0, D+0, D∗0

s , B∗,
B∗0 and B0∗

s .

Therefore an RMS error around 13% is reasonable for this model, considering
the simplicity of the proposal done and the complexity of the QCD physics at
a strong regime.

Things to do next: to extend this model to other hadronic properties as wave
functions, decay constants, form factors, melting temperatures and density
effects.
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Thank you!
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Appendix: WKB method for a General Dilaton Field

Consider the general trajectory

M2
n = a(n + b)ν .

Obtained as a eigenvalue spectrum from the holographic potential

V (z) = VAdS(z) +
1

4
Φ′(z)2 − 1

2 z
Φ′′(z)− β

2
Φ′(z), (4)

where

VAdS(z) =
β(β − 2) + 4M2

d+2 R
2

4 z2
. (5)

At large z , only positive powers of z will contribute to the potential. These
powers can be added into a single function H(z), defined as

H(z) =
1

4
Φ′(z)2 − 1

2
Φ′′(z)− β

2 z
Φ′(z). (6)
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Appendix: WKB method for a General Dilaton Field

The H(z) function is entirely determined by the WKB method since we can always
reconstruct the potential from a given spectrum. Thus applying WKB we have

z(V ) = 2

∫ V

0

d M2

d M2

d n (V −M2
n )1/2

. (7)

Performing the spectrum derivative we obtain:

d M2
n

d n
= a ν (n + b)ν−1 = a ν

(
M2

n

a

) ν−1
ν

. (8)

Solving this equation we obtain the approximation for the holographic potential

V (z) =

[
a1/ν

2π1/2

ν Γ
(
ν+2
2 ν

)
Γ
(

1
ν

) z

] 2 ν
2−ν

≡ C (ν, a) z
2 ν

2−ν . (9)

Where 0 < ν < 2. Notice that if we fix ν = 1 we recover the soft wall model case.
Now, we can solve the dilaton for the nonlinear trajectory case.
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Appendix: WKB method for a General Dilaton Field

From the solution for the potential we can infer the dilaton by solving:

C (ν, a) z
2 ν

2−ν =
1

4
Φ′(z)2 − 1

2
Φ′′(z)− β

2
Φ′(z), (10)

where the boundary conditions should be fixed as

Φ′(z → 0) = 0 and Φ′(z →∞) =
2 ν

2− ν
C (ν, a) z

2 ν
2−ν−1
∞ ,

where z∞ is large z value used to fit the numerical infinity.
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Appendix: WKB method for a General Dilaton Field

Quadratic Dilaton
We will fix ν = 1, implying that the potential will have the harmonic form.
Therefore, the equation for the dilaton would be

a2

16
z2 =

1

4
Φ′(z)2 − 1

2
Φ′′(z)− β

2 z
Φ′(z) (11)

This equation has an analytical solution

Φ(z) = c1 − 2 log
[
cosh

(a
8
z2 − 2 c2

)]
. (12)

Now we can fix c2 →∞ implying that cosh2 a c2 = sinh 2 a c1 = 1. Therefore we
obtain

cosh
a2

8
z2 − sinh

a

8
z2 = e−

a
8 z

2

. (13)

Now fix c1 = 0 and finally, we will obtain to the standard quadratic dilaton

Φ(z) = −2 log
(
e−

a
8 z

2
)

=
a

4
z2 ≡ k2 z2 (14)
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Appendix: WKB method for a General Dilaton Field

Other cases

The dominant terms in the holographic potential at large z come from the Φ′(z)2

term in the potential. Thus, we can approximately fulfill the following condition

VWKB(z) =
1

4
Φ′(z)2 (15)

at large z . Therefore, we can suppose an ansatz for the dilaton as

Φ(z) = (κ z)γ , (16)

where κ is an energy scale. Calculating the derivative, we can construct the
contribution to the potential at large z :

Φ(z)2 = γ2 κ2γ z2(γ−1). (17)

Thus, for the WKB potential condition (15) we have

C (ν, a) z
2 ν

2−ν =
1

4
γ2 κ2γ z2(γ−1), (18)
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Appendix: WKB method for a General Dilaton Field

Other cases
If we require that both parts of the equation match, we will obtain the following
relations for the exponent γ and the energy scale κ as:

γ =
2

2− ν
(19)

κ =
[
(2− ν)2 C (ν, a)

] 2−ν
4

. (20)

If we do the definition γ = 2− α, we obtain the non-quadratic dilaton proposed
here written in terms of the trajectory parameters.
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