Tree Level FCNC from Models with a Flavored Peccei-Quinn Symmetry

Work in progress, in collaboration with E. Rojas, R. Martínez and J. C. Salazar, based in part on arXiv:2007.05653 [hep-ph]

Yithsbey Giraldo

Universidad de Nariño

December 4, 2020

5th ComHEP: Colombian Meeting on High Energy Physics

30 de noviembre de 2020 to 4 de diciembre de 2020 America/Bogota timezone

Overview

- 1 The five texture-zero mass matrices
- 2 Yukawa Lagrangian and the PQ symmetry
- Symmetry 10 Yukawa Lagrangian and the PQ symmetry 10 Yukawa Lagrangian and the PQ symmetry 10 Yukawa PQ SYMA PQ S
 - 4 Naturalness of Yukawa couplings
- 5 The Effective Lagrangian
- 6 Low energy constraints and experimental bounds
 - Experimental bounds
 - Conclusions
 - Onclusions

The five texture-zero mass matrices

- Texture zeros \rightarrow simplify the number of free parameters \rightarrow zeros will have predictions.
- The following five-zero textures gets a good fit for the quark and lepton masses and mixing parameters.
- Quark mass matrices (Yithsbey et al, J.Phys.G47,11,115002(2020)):

$$\begin{split} \mathcal{M}^{U} &= \begin{pmatrix} 0 & 0 & C_{u} \\ 0 & A_{u} & B_{u} \\ C_{u}^{*} & B_{u}^{*} & D_{u} \end{pmatrix}, \qquad \qquad \mathcal{M}^{U} = \begin{pmatrix} 0 & 0 & |C_{u}|e^{i\phi C_{u}} \\ 0 & A_{u} & |B_{u}|e^{i\phi B_{u}} \\ |C_{u}|e^{-i\phi C_{u}} & |B_{u}|e^{-i\phi B_{u}} & D_{u} \end{pmatrix}, \\ \mathcal{M}^{D} &= \begin{pmatrix} 0 & C_{d} & 0 \\ C_{d}^{*} & 0 & B_{d} \\ 0 & B_{d}^{*} & A_{d} \end{pmatrix}, \qquad \qquad \mathcal{M}^{D} = \begin{pmatrix} 0 & |C_{d}| & 0 \\ |C_{d}| & 0 & |B_{d}| \\ 0 & |B_{d}| & A_{d} \end{pmatrix}. \end{split}$$

Hermitian matrices

Lepton mass matrices (Yithsbey, Phys. Rev. D86,093021(2012)):

$$M^{N} = \begin{pmatrix} 0 & |C_{\nu}|e^{iC_{\nu}} & 0 \\ |C_{\nu}|e^{-ic_{\nu}} & E_{\nu} & |B_{\nu}|e^{ib_{\nu}} \\ 0 & |B_{\nu}|e^{-ib_{\nu}} & A_{\nu} \end{pmatrix}, \quad \Leftrightarrow D \\ neut \\ M^{E} = \begin{pmatrix} 0 & |C_{\ell}| & 0 \\ |C_{\ell}| & 0 & |B_{\ell}| \\ 0 & |B_{\ell}| & A_{\ell} \end{pmatrix}.$$

← Dirac mass neutrinos

Hermitian matrices

The five texture-zero mass matrices

Diagonalization matrices for the quark sector:

$$U^{U\dagger} = \begin{pmatrix} e^{i(\phi_{C_u} + \theta_{1u})} \sqrt{\frac{m_c m_t(A_u - m_u)}{A_u(m_c + m_u)(m_t - m_u)}} & -e^{i(\phi_{C_u} + \theta_{2u})} \sqrt{\frac{(A_u + m_c)m_t m_u}{A_u(m_c + m_t)(m_c + m_u)}} & e^{i(\phi_{C_u} + \theta_{3u})} \sqrt{\frac{m_c(m_t - A_u)m_u}{A_u(m_c + m_t)(m_c - m_u)}} \\ -e^{i(\phi_{B_u} + \theta_{1u})} \sqrt{\frac{(A_u + m_c)(m_t - A_u)m_u}{A_u(m_c + m_u)(m_t - m_u)}} & -e^{i(\phi_{B_u} + \theta_{2u})} \sqrt{\frac{m_c(m_t - A_u)(A_u - m_u)}{A_u(m_c + m_t)(m_c + m_u)}} & e^{i(\phi_{B_u} + \theta_{3u})} \sqrt{\frac{A_u(m_c + m_c)(m_t - M_u)}{A_u(m_c + m_t)(m_c - m_u)}}} \\ e^{i\theta_{1u}} \sqrt{\frac{m_u(A_u - m_u)}{(m_c - m_u)(m_t - m_u)}} & e^{i\theta_{2u}} \sqrt{\frac{m_c(A_u + m_c)}{(m_c + m_t)(m_c + m_u)}} & e^{i\theta_{3u}} \sqrt{\frac{m_t(m_t - A_u)m_u}{(m_c - m_t)(m_t - m_u)}} \end{pmatrix}}, \\ J^{D\dagger} = \begin{pmatrix} e^{i\theta_{1d}} \sqrt{\frac{m_b(m_b - m_s)m_s}{(m_b - m_d)(m_d + m_s)(m_b + m_d - m_s)}} & -e^{i\theta_{2d}} \sqrt{\frac{m_b(m_b + m_d)m_d}{(m_d + m_s)(m_b + m_d)(m_b + m_d)}} & \sqrt{\frac{m_b(m_s - m_d)m_s}{(m_b - m_d)(m_b + m_d - m_s)(m_b + m_s)}} \\ -e^{i\theta_{1d}} \sqrt{\frac{m_d(m_b - m_d)(m_d - m_d)}{(m_b - m_d)(m_d + m_s)}} & -e^{i\theta_{2d}} \sqrt{\frac{(m_b - m_s)m_s}{(m_d + m_s)(m_b + m_d - m_s)}}} & \sqrt{\frac{m_b(m_s - m_d)m_s}{(m_b - m_d)(m_b + m_d - m_s)(m_b + m_s)}} \end{pmatrix}$$

 $m_u \leq A_u \leq m_t$.

The five texture-zero mass matrices

Diagonalization matrices for the lepton sector:

$$U^{N\dagger} = \begin{pmatrix} e^{i(\theta_{1\nu}+c_{\nu})} \sqrt{\frac{m_2m_3(A_{\nu}-m_1)}{A_{\nu}(m_2+m_1)(m_3-m_1)}} & -e^{i(\theta_{2\nu}+c_{\nu})} \sqrt{\frac{m_1m_3(m_2+A_{\nu})}{A_{\nu}(m_2+m_1)(m_3+m_2)}} & e^{i(\theta_{3\nu}+c_{\nu})} \sqrt{\frac{m_1m_2(m_3-A_{\nu})}{A_{\nu}(m_3-m_1)(m_3+m_2)}} \\ e^{i\theta_{1\nu}} \sqrt{\frac{m_1(A_{\nu}-m_1)}{(m_1+m_2)(m_3-m_1)}} & e^{i\theta_{2\nu}} \sqrt{\frac{m_2(A_{\nu}+m_2)}{(m_2+m_1)(m_3+m_2)}} & e^{i\theta_{3\nu}} \sqrt{\frac{m_3(m_3-A_{\nu})}{(m_3-m_1)(m_3+m_2)}} \\ -e^{i(\theta_{1\nu}-b_{\nu})} \sqrt{\frac{m_1(A_{\nu}+m_2)(m_3-A_{\nu})}{A_{\nu}(m_1+m_2)(m_3-m_1)}} & -e^{i(\theta_{2\nu}-b_{\nu})} \sqrt{\frac{m_2(A_{\nu}-m_1)(m_3-A_{\nu})}{A_{\nu}(m_2+m_1)(m_3+m_2)}} & e^{i(\theta_{3\nu}-b_{\nu})} \sqrt{\frac{m_3(A_{\nu}-m_1)(A_{\nu}+m_2)}{A_{\nu}(m_3-m_1)(m_3+m_2)}} \end{pmatrix},$$

$$J^{E\dagger} = \begin{pmatrix} e^{i\theta_{1\ell}} \sqrt{\frac{m_\mu m_\tau(m_\tau-m_\mu)}{(m_e-m_\mu+m_\tau)(m_\mu+m_e)(m_\tau-m_e)}} & -e^{i\theta_{2\ell}} \sqrt{\frac{m_e m_\tau(m_e+m_\tau)}{(m_e-m_\mu+m_\tau)(m_\mu+m_e)(m_\tau+m_\mu)}} & \sqrt{\frac{m_e m_\mu (m_\mu-m_e)}{(m_e-m_\mu+m_\tau)(m_e-m_e)(m_\tau+m_\mu)}} \\ -e^{i\theta_{1\ell}} \sqrt{\frac{m_e(m_e+m_\tau)(m_\mu-m_e)}{(m_e-m_\mu+m_\tau)(m_\mu+m_e)(m_\tau-m_e)}} & -e^{i\theta_{2\ell}} \sqrt{\frac{m_\mu (m_e-m_e)}{(m_e-m_\mu+m_\tau)(m_\mu+m_e)(m_\tau+m_\mu)}}} & \sqrt{\frac{m_\tau(m_\tau-m_\mu)(m_e+m_\tau)}{(m_e-m_\mu+m_\tau)(m_\tau-m_e)(m_\tau+m_\mu)}} \end{pmatrix}$$

 $m_1 \leq A_{\nu} \leq m_3$.

ι

Yukawa Lagrangian and the PQ symmetry

$$\mathcal{L} \supset - \left(\bar{q}_{Li} y_{ij}^{D\alpha} \Phi^{\alpha} d_{Rj} + \bar{q}_{Li} y_{ij}^{U\alpha} \tilde{\Phi}^{\alpha} u_{Rj} + \bar{\ell}_{Li} y_{ij}^{E\alpha} \Phi^{\alpha} e_{Rj} + \bar{\ell}_{Li} y_{ij}^{N\alpha} \tilde{\Phi}^{\alpha} \nu_{Rj} + h.c \right),$$

$$M^{N} = \begin{pmatrix} 0 & x & 0 \\ x & x & x \\ 0 & x & x \end{pmatrix} \longrightarrow \begin{pmatrix} S_{11}^{N\alpha} \neq 0 & S_{12}^{N\alpha} = 0 & S_{13}^{N\alpha} \neq 0 \\ S_{21}^{N\alpha} = 0 & S_{22}^{N\alpha} = 0 & S_{23}^{N\alpha} = 0 \\ S_{31}^{N\alpha} \neq 0 & S_{32}^{N\alpha} = 0 & S_{33}^{N\alpha} = 0 \end{pmatrix},$$

$$M^{E} = \begin{pmatrix} 0 & x & 0 \\ x & 0 & x \\ 0 & x & x \end{pmatrix} \longrightarrow \begin{pmatrix} S_{11}^{E\alpha} \neq 0 & S_{12}^{E\alpha} = 0 & S_{13}^{E\alpha} \neq 0 \\ S_{21}^{E\alpha} = 0 & S_{22}^{E\alpha} \neq 0 & S_{23}^{E\alpha} = 0 \\ S_{21}^{E\alpha} = 0 & S_{22}^{E\alpha} \neq 0 & S_{23}^{E\alpha} = 0 \\ S_{31}^{E\alpha} \neq 0 & S_{32}^{E\alpha} = 0 & S_{33}^{E\alpha} = 0 \end{pmatrix},$$
where $S_{ij}^{N\alpha} = \underbrace{(-x_{\ell_{i}} + x_{\nu_{j}} - x_{\phi_{\alpha}})}_{\text{Peccei Quinn Charges}}$ and $S_{ij}^{E\alpha} = \underbrace{(-x_{\ell_{i}} + x_{e_{j}} + x_{\phi_{\alpha}})}_{\text{PQ charges}}$.

Yukawa Lagrangian and the PQ symmetry

Particle content and their respective PQ charges:

Particles	Spin	<i>SU</i> (3) _C	$SU(2)_L$	$U(1)_Y$	$Q_{\rm PQ}(i=1)$	$Q_{\rm PQ}(i=2)$	$Q_{PQ}(i=3)$	$U(1)_{PQ}$
<i>q</i> Li	1/2	3	2	1/6	$-2s_1+2s_2+\alpha$	$-s_1 + s_2 + \alpha$	α	x _{qi}
u _{Ri}	1/2	3	1	2/3	$s_1 + \alpha$	$s_2 + \alpha$	$-s_1 + 2s_2 + \alpha$	X _{Ui}
d _{Ri}	1/2	3	1	-1/3	$2s_1 - 3s_2 + \alpha$	$s_1 - 2s_2 + \alpha$	$-s_2 + \alpha$	x _{di}
ℓ_{Li}	1/2	1	2	-1/2	$-2s_1+2s_2+\alpha'$	$-s_1+s_2+\alpha'$	α'	x_{ℓ_i}
e _{Ri}	1/2	1	1	-1	$2s_1 - 3s_2 + \alpha'$	$s_1 - 2s_2 + \alpha'$	$-s_2 + \alpha'$	X _{ei}
ν_{Ri}	1/2	1	1	0	$-4s_1 + 5s_2 + \alpha'$	$-s_1 + 2s_2 + \alpha'$	$s_2 + \alpha'$	X_{ν_i}

- The subindex i = 1, 2, 3 stand for the family number in the interaction basis.
- The columns 6-8 are the peccei-Quinn Q_{PQ} charges for the standard model quark in each family.
- The parameters s_1, s_2 and α are reals, with $s_1 \neq s_2$. Here: $s_1 = \frac{N}{9}\hat{s}_1$ and $s_2 = \frac{N}{9} (\epsilon + \hat{s}_1)$. Where N is the QCD anomaly.

Yukawa Lagrangian and the PQ symmetry

Beyond standard model scalar and fermion fields and their respective PQ charges:

Particles	Spin	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	Q_{PQ}	$U(1)_{PQ}$
ϕ_1	0	1	2	1/2	<i>s</i> ₁	x_{ϕ_1}
ϕ_2	0	1	2	1/2	<i>s</i> ₂	x_{ϕ_2}
ϕ_3	0	1	2	1/2	$-s_1 + 2s_2$	x_{ϕ_3}
ϕ_4	0	1	2	1/2	$-3s_1 + 4s_2$	X_{ϕ_4}
S	0	1	1	0	$x_S \neq 0$	XS
Q_L	1/2	3	0	0	y y (0	XQI
Q_R	1/2	3	0	0	$x_{Q_L} - x_{Q_R} \neq 0$	X _{Q_R}

- $\epsilon = (1 A_Q/N)$ and $A_Q = x_{Q_L} x_{Q_R}$ is the contribution to the anomaly of a heavy quark Q singlet under the electroweak gauge group, with left (right)-handed Peccei-Quinn charges $x_{Q_{L,R}}$, respectively.
- To solve the strong CP problem N = 2Σq − Σu − Σd + A_Q ≠ 0 and to generate the texture-zeros in the mass matrices it is necessary to keep ε ≠ 0.

Naturalness of Yukawa couplings

• Quark sector:

$$\mathcal{M}^{U} = \hat{v}_{\alpha} y_{ij}^{U\alpha} = \begin{pmatrix} 0 & 0 & y_{13}^{U1} \hat{v}_{1} \\ 0 & y_{22}^{U1} \hat{v}_{1} & y_{23}^{U2} \hat{v}_{2} \\ y_{13}^{U1*} \hat{v}_{1} & y_{23}^{U2*} \hat{v}_{2} & y_{33}^{U3} \hat{v}_{3} \end{pmatrix}, \ \mathcal{M}^{D} = \hat{v}_{\alpha} y_{ij}^{D\alpha} = \begin{pmatrix} 0 & |y_{12}^{D4}| \hat{v}_{4} & 0 \\ |y_{12}^{D4}| \hat{v}_{4} & 0 & |y_{23}^{D3}| \hat{v}_{3} \\ 0 & |y_{23}^{D3}| \hat{v}_{3} & y_{33}^{D2} \hat{v}_{2} \end{pmatrix}$$

 $\hat{v}_1 = 1.71 \, \text{GeV}, \quad \hat{v}_2 = 2.91 \, \text{GeV}, \quad \hat{v}_3 = 174.085 \, \text{GeV}, \quad \hat{v}_4 = 13.3 \, \text{MeV}.$

• Lepton sector:

$$\mathcal{M}^{N} = \hat{v}_{\alpha} y_{ij}^{N\alpha} = \begin{pmatrix} 0 & y_{12}^{N1} \hat{v}_{1} & 0 \\ y_{21}^{N4} \hat{v}_{4} & y_{22}^{N2} \hat{v}_{2} & y_{23}^{N1} \hat{v}_{1} \\ 0 & y_{32}^{N3} \hat{v}_{3} & y_{33}^{N2} \hat{v}_{2} \end{pmatrix}, \ \mathcal{M}^{E} = \hat{v}_{\alpha} y_{ij}^{E\alpha} = \begin{pmatrix} 0 & |y_{12}^{E4}| \hat{v}_{4} & 0 \\ |y_{12}^{E4}| \hat{v}_{4} & 0 & |y_{23}^{E3}| \hat{v}_{3} \\ 0 & |y_{23}^{E3}| \hat{v}_{3} & y_{33}^{E2} \hat{v}_{2} \end{pmatrix}.$$

$$\begin{split} |y_{12}^{E4}| &= 0.569582, \qquad |y_{23}^{E3}| = 0.00248291, \qquad y_{32}^{E3} = 0.574472, \\ |y_{12}^{N1}| &= 4.74362 \times 10^{-6}, \qquad |y_{21}^{N4}| = 0.000609894, \qquad y_{22}^{N2} = 6.68808 \times 10^{-6}, \\ |y_{23}^{N1}| &= 0.0000159881, \qquad |y_{32}^{N2}| = 1.57047 \times 10^{-7}, \qquad y_{33}^{N2} = 8.65364 \times 10^{-6}. \end{split}$$

The Effective Lagrangian

Axion-gauge-scalar effective interaction. Wilson coefficients.

Effective operators:

$$\begin{split} O_{a\Phi} &= i \frac{\partial^{\mu} a}{\Lambda} \left((D_{\mu} \Phi^{\alpha})^{\dagger} \Phi^{\alpha} - \Phi^{\alpha \dagger} (D_{\mu} \Phi^{\alpha}) \right), \qquad O_{B} = -\frac{a}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu}, \\ O_{W} &= -\frac{a}{\Lambda} W^{a}_{\mu\nu} \tilde{W}^{a\mu\nu}, \qquad \qquad O_{G} = -\frac{a}{\Lambda} G^{a}_{\mu\nu} \tilde{G}^{a\mu\nu}. \end{split}$$

Where $\Lambda = f_a c_3^{\text{eff}}$, $c_3^{\text{eff}} = c_3 - 2\Sigma q + \Sigma u + \Sigma d - A_Q = -N$ and f_a axion decay constant.

The Effective Lagrangian

• Redefining the fields

$$\begin{split} \Phi^{\alpha} &\longrightarrow e^{i\frac{x_{\Phi^{\alpha}}}{\Lambda}a} \Phi^{\alpha}, \\ \psi_{L} &\longrightarrow e^{i\frac{x_{\Psi_{L}}}{\Lambda}a} \psi_{L}, \\ \psi_{R} &\longrightarrow e^{i\frac{x_{\Psi_{R}}}{\Lambda}a} \psi_{R}, \end{split}$$

$$\mathcal{L} \longrightarrow \mathcal{L} + \Delta \mathcal{L}_{LO},$$

where

$$\Delta \mathcal{L}_{\mathsf{LO}} = \Delta \mathcal{L}_{\mathcal{K}^{\Phi}} + \Delta \mathcal{L}_{\mathcal{K}^{\psi}} + \Delta \mathcal{L}_{\mathsf{Yukawa}} + \Delta \mathcal{L}(\mathcal{F}_{\mu\nu}).$$

The Effective Lagrangian

• FCNC:

$$\begin{split} \Delta \mathcal{L}_{K\psi} &= \frac{\partial_{\mu} a}{2\Lambda} \sum_{\psi} (x_{\psi_{L}} - x_{\psi_{R}}) \bar{\psi} \gamma^{\mu} \gamma^{5} \psi - (x_{\psi_{L}} + x_{\psi_{R}}) \bar{\psi} \gamma^{\mu} \psi, \\ \Delta \mathcal{L}_{Y} &= \frac{i a}{\Lambda} \bar{q}_{Li} \left(y_{ij}^{D\alpha} x_{dj} - x_{q_{i}} y_{ij}^{D\alpha} + x_{\Phi^{\alpha}} y_{ij}^{D\alpha} \right) \Phi^{\alpha} d_{Rj} \\ &+ \frac{i a}{\Lambda} \bar{q}_{Li} \left(y_{ij}^{U\alpha} x_{uj} - x_{q_{i}} y_{ij}^{U\alpha} - x_{\Phi^{\alpha}} y_{ij}^{U\alpha} \right) \tilde{\Phi}^{\alpha} u_{Rj} \\ &+ \frac{i a}{\Lambda} \bar{l}_{Li} \left(y_{ij}^{E\alpha} x_{e_{j}} - x_{l_{i}} y_{ij}^{E\alpha} + x_{\Phi^{\alpha}} y_{ij}^{E\alpha} \right) \Phi^{\alpha} e_{Rj} \\ &+ \frac{i a}{\Lambda} \bar{l}_{Li} \left(y_{ij}^{N\alpha} x_{\nu_{j}} - x_{l_{i}} y_{ij}^{N\alpha} - x_{\Phi^{\alpha}} y_{ij}^{N\alpha} \right) \tilde{\Phi}^{\alpha} \nu_{Rj} + \text{h.c.} \end{split}$$

Low energy constraints and experimental bounds

The general form of the vector and axial coupligns:

$$g_{af_if_j}^{V,A} = \frac{1}{2f_a c_3^{\text{eff}}} \left(2\Delta_{V,A}^{Fij} - 2T_3^F \frac{\hat{v} \Delta_{\Phi}^{\gamma 1} Y_{V,A}^{F\gamma ij}}{(m_i^F \mp m_j^F)} \right),$$

where $\Delta_{V,A}^{Fij} = \Delta_{RR}^{Fij}(d) \pm \Delta_{LL}^{Dij}(q)$ with $\Delta_{LL}^{Fij}(q) = \left(U_L^F x_q \ U_L^{F\dagger}\right)^{ij}$ and $\Delta_{RR}^{Fij}(d) = \left(U_R^F x_d \ U_R^{F\dagger}\right)^{ij}$. $T_3^F = \pm 1/2$.

- The parameters associated with the FCNC due to the differences between the Higgs charges are: $\Delta_{\Phi}^{\gamma\beta} = (Rx_{\Phi}R^{T})^{\gamma\beta}$, $\hat{v} = v/\sqrt{2}$ and $Y_{V,A}^{F\gamma ij} = (Y_{ij}^{F\gamma} \mp Y_{ij}^{F\gamma\dagger})$.
- The term with $\gamma = 1$ does not contribute to the FCNC since $Y^{F_1} = \frac{2}{v}m^F$ is a diagonal matrix but there are off-diagonal contributions for $\gamma = 2, 3, 4$. The Yukawa matrix in the mass basis is given by $Y_{ij}^{F\gamma} = \left(U_L^F R_{\gamma\alpha} y^{F\alpha} U_R^{F\dagger}\right)_{ii}$.
- The factor 2 in front of Δ^{Fij}_{V,A} and the second term inside the brackets are a new contributions with respect to the existing literature.
- For normalized charges $c_3^{\text{eff}} = 1$.

Low energy constraints and experimental bounds

• Branching ratio:
$$\mathsf{Br}(\ell_1 \to \ell_2 a) = \frac{m_{\ell_1}^3}{16\pi\Gamma(\ell_1)} \left(1 - \frac{m_{\ell_2}^2}{m_{\ell_1}^2}\right)^3 |g_{a\ell_1\ell_2}|^2.$$

Collaboration	Upper bound
E949+E787	$\mathcal{B}\left(\mathcal{K}^+ ightarrow \pi^+ a ight) < 0.73 imes 10^{-10}$
CLEO	$\mathcal{B}\left(B^{\pm} ightarrow\pi^{\pm}a ight) < 4.9 imes10^{-5}$
CLEO	$\mathcal{B}\left(B^{\pm} ightarrow\mathcal{K}^{\pm}\mathbf{a} ight)<4.9 imes10^{-5}$
BELLE	$\mathcal{B}\left(B^{\pm} ightarrow ho^{\pm}{a} ight) < 21.3 imes10^{-5}$
BELLE	$\mathcal{B}\left(B^{\pm} ightarrow {\it K}^{*\pm}{\it a} ight) < 4.0 imes 10^{-5}$
TRIUMF	$\mathcal{B}\left(\mu^+ ightarrow e^+ a ight) < 2.6 imes 10^{-6}$
Crystal Box	$\mathcal{B}\left(\mu^+ ightarrow e^+ \gamma a ight) < 1.1 imes 10^{-9}$
ARGUS	$\mathcal{B}\left(au^+ ightarrow e^+ a ight) < 1.5 imes 10^{-2}$
ARGUS	$\mathcal{B}\left(au^+ o \mu^+ a ight) < 2.6 imes 10^{-2}$

These inequalities come from the window for new physics in the branching ratio uncertainty of the meson and lepton decay.

Yithsbey Giraldo (Universidad de Nariño)

Experimental bounds

Summary and conclusions

- A model is proposed where the fermionic and scalar fields are charged under a Peccei-Queen PQ symmetry.
- 2 The PQ charges are chosen in such a way that they can reproduce mass matrices with five texture zeros that can reproduce the masses of the standard model (SM) fermions, the CKM matrix and the PMNS matrix.

- To obtain this result, at least 4 Higgs doublets are needed.
- This model shows a route to understand the different scales of the SM by extending it with a Higgs sector and a PQ symmetry.
- Since the PQ charges are not universal, the model presents flavor changing neutral currents (FCNC) at the tree level, a feature that constitutes the main source of restrictions on the parameter space.
- If we include a heavy quark it is possible to fit the anomaly reported by xenon as a consequence of light axions.
- In our work, we have normalized the PQ charges with the QCD anomaly -N in such a way that keeping the parameter $\epsilon = 1 - A_Q/N \neq 0$ the textures of the mass matrices that allow us to tackle the flavor problem are obtained and the problem of strong CP is solved.

O We report the regions of the parameter space allowed by lepton decays and compare the strength of these constraints with those coming from the semileptonic decays $K^{\pm} \longrightarrow \pi \bar{\nu} \nu$.

THANK YOU!