

J. Jones-Pérez, <u>J. Masias</u>, J.D. Ruiz-Álvarez

Type 1 Seesaw Lagrangian

$$\mathcal{L} = \mathcal{L}_{SM} - \bar{L}_a (Y_{\nu})_{as} \nu_{R_s} \tilde{\phi}$$
$$- \frac{1}{2} \bar{\nu}_{R_s}^c (M_R)_{st} \nu_{R_t} + \text{h.c.}$$

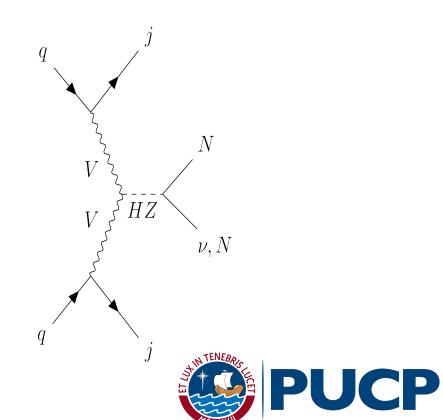
Type 1 Seesaw Lagrangian

Extended Model

$$S_M - \bar{L}_a (Y_{\nu})_{as} \nu_{R_s} \tilde{\phi}$$

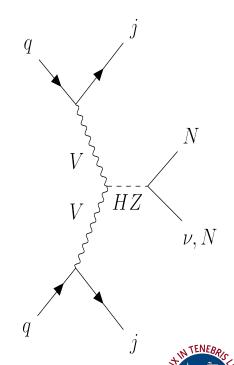
$$\mathcal{L} = \mathcal{L}_{SM} - \bar{L}_a (Y_{\nu})_{as} \nu_{R_s} \tilde{\phi}$$
$$-\frac{1}{2} \bar{\nu}_{R}^c (M_{R})_{st} \nu_{R_s} + \text{h.c.}$$

$$\Delta \mathcal{L} = -\frac{\lambda_{st}}{\Lambda} \, \bar{\nu}_{R_s}^c \, \nu_{R_t} \, \phi^{\dagger} \, \phi + \text{h.c.}$$


$$-\frac{1}{2}\bar{\nu}_{R_s}^c(M_R)_{st}\nu_{R_t} + \text{h.c.} \quad \mathcal{L}_{h^0\nu_h\nu_h} = -(\alpha_{NH})_{st}\bar{\nu}_{R_s}^c\nu_{R_t}h^0 + \text{h.c.}$$

$$= -(\alpha_{NH})_{st} \bar{\nu}_{R_s}^c \nu_{R_t} h^0 + \text{h.c.}$$

 $(\alpha_{NH})_{st} \equiv \lambda_{st} v_{\rm SM}/\Lambda$



The VBF Trigger

The VBF Trigger

$p_T(j_1)$	> 30 GeV
$\mid \eta(j_1) \mid$	< 5.0
$p_T(j_2)$	> 30 GeV
$ \eta(j_2) $	< 5.0
$\eta(j_1)\cdot\eta(j_2)$	< 0
$ \Delta\eta(j_1,j_2) $	> 4.2
$m_{j_1j_2}$	>750 GeV
$\sum_{j} p_{T}$	$> 200 \mathrm{GeV}$

Cuts used for displaced dileptons search

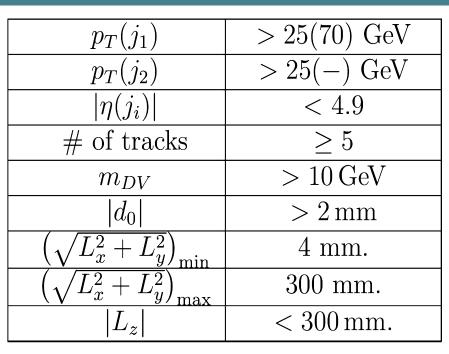
$p_T(e)$	> 10 GeV
$p_T(\mu)$	> 8 GeV
$\mid \eta(\ell) \mid$	< 2.4
$\Delta R(\mu, e)$	> 0.5
$\sqrt{L_x^2 + L_y^2}$	$< 40\mathrm{mm}$
L_z	< 300 mm

Cuts used for displaced dileptons search

$p_T(e)$	> 10 GeV
$p_T(\mu)$	> 8 GeV
$\mid \eta(\ell) \mid$	< 2.4
$\Delta R(\mu, e)$	> 0.5
$\sqrt{L_x^2 + L_y^2}$	< 40 mm
L_z	$< 300 \rm mm$

$$d_0 = \frac{|p_x^{\ell} L_y - p_y^{\ell} L_x|}{p_T^{\ell}}$$

- SR III: $|d_0|_{e,\mu} > 1000 \,\mu\text{m}$
- SR II: $|d_0|_{e,\mu} > 500 \,\mu\text{m}$ and at least one of the leptons outside of SR III.
- SR I: $|d_0|_{e,\mu} > 200 \,\mu\text{m}$ and at least one of the leptons outside of SR II.

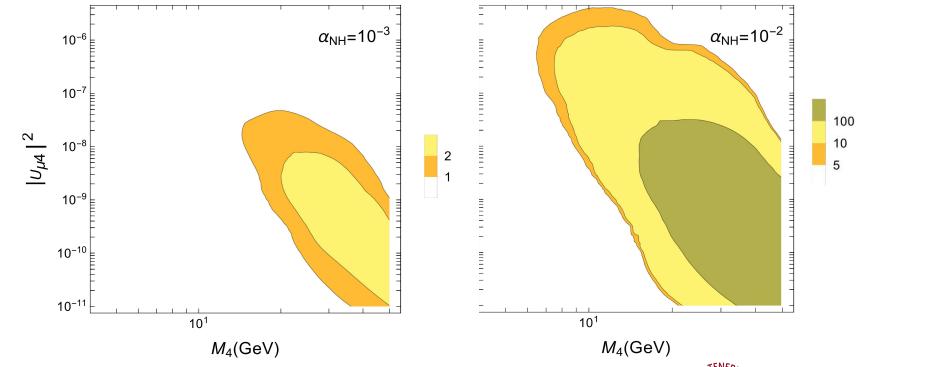

Cuts used for displaced dileptons search

Cuts used for displaced multitrack jets search

$p_T(e)$	> 10 GeV
$p_T(\mu)$	> 8 GeV
$\mid \eta(\ell) \mid$	< 2.4
$\Delta R(\mu, e)$	> 0.5
$\sqrt{L_x^2 + L_y^2}$	< 40 mm
L_z	< 300 mm

$$d_0 = \frac{|p_x^{\ell} L_y - p_y^{\ell} L_x|}{p_T^{\ell}}$$

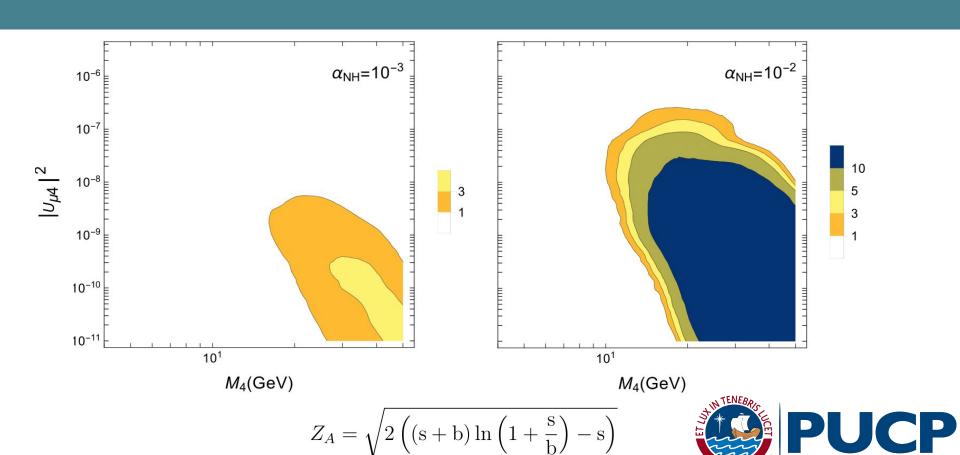
- SR III: $|d_0|_{e,\mu} > 1000 \,\mu\text{m}$
- SR II: $|d_0|_{e,\mu} > 500 \,\mu\text{m}$ and at least one of the leptons outside of SR III.
- SR I: $|d_0|_{e,\mu} > 200 \,\mu\text{m}$ and at least one of the leptons outside of SR II.



Final number of events with displaced dilepton for $\alpha_{NH} = 10^{-3} (10^{-2})$

Final number of events with displaced dilepton for $\alpha_{NH} = 10^{-3} (10^{-2})$

Sensitivity with displaced multitrack jets for $\alpha_{NH} = 10^{-3} (10^{-2})^{-1}$



Sensitivity with displaced multitrack jets for $\alpha_{NH} = 10^{-3}(10^{-2})$

$$Z_A = \sqrt{2\left((s+b)\ln\left(1+\frac{s}{b}\right)-s\right)}$$

Sensitivity with displaced multitrack jets for $\alpha_{NH} = 10^{-3}(10^{-2})$

