

Update on impact of flux jumps in 11T dipoles in Run3

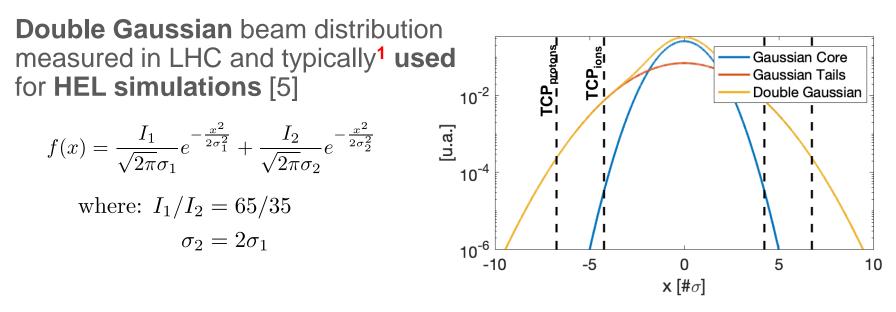
D. Gamba, G. Arduini, M.C. Bastos, R. Bruce, J. Coello de Portugal, L. Fiscarelli, M. Martino, A. Mereghetti, D. Mirarchi, S. Radaelli, M. Schaumann, R. Tomas

171st HiLumi WP2 – 24th Mar 2020

Available Information

- Looking only at 11 T dipoles assuming they may show a measurable effect in Run 3
 - Too little information about RQX behavior to be predictive for HL-LHC => let's start with LHC!

Description	Measured or Estimated	Value	Ref.
Flux jump B1 amplitude (all in the same "direction")	Measured	mean 0.2 units peak 0.6 units	[1,3]
Flux jump A2-like amplitude	Measured (neglected here)	mean 0.15 units at 17 mm	[1,3]
Trim power converter reaction	Estimated	6 ppm σ (of 600 A) 18 ppm 3xσ	[2,3]
Main dipole power converter reaction	Estimated (neglected here)	8e-3 ppm σ (of 13 kA)	[2]
Single flux jump duration	Measured → Estimated →	50 ms mean rise time 120 ms FWHM	[1,3]
Beam energy when most flux jumps occur	Measured	≈1.2 – ≈2.4 TeV → <3 TeV (2 – 4 kA current)	[1,3]
Frequency of the flux jumps	Measured	4.4 jumps/s	[1,3]
Number of flux jumps per fill	Computed	880 jumps	[4]
Probability of a unit to be in a jump at a given time	Computed	1/2	[4]


[1] L. Fiscarelli – Measurements and analysis of flux jumps (indico)
 [2] M. Martino – Impact of Flux Jumps on PC Performance (indico)
 [3] J. Coello de Portugal – Impact of flux jumps in future colliders (PRAB)
 [4] D. Gamba – Revisiting flux jumps impact on orbit (indico)

Worst Case Assumptions

- Field jumps are given in "units"
 - Amplitude of the kick (in rad) is constant independently of energy
 - Orbit distortion, in $\sigma_{\text{beam}},$ increases with energy due to adiabatic damping
- We **assume** to have **4 11T units** installed in **LHC** after LS2
 - A flux jump in each unit will cause an orbit jump at the TCPs
- We assume the **worst case scenario**:
 - Several 11T units jumping at the same time in the worst combination
 - Each unit jumps of **0.6 units** amplitude (i.e. **peak value**!)
 - 3/1.18A TeV energy protons/²⁰⁸Pb⁸²⁺
 - worst ratio between orbit jump and beam sigma

Assumption on beam distribution and TCPs

• **TCP aperture** 5.7 σ (wrt ϵ_N = 3.5 µm) equal (in mm) for protons and ions

- Protons: **6.7** σ_{beam} (wrt core ϵ_{N} = **2.5** μ m)
 - Conservative!: in LHC typical measured e_N ≈ 2 µm
- lons: **4.2** σ_{beam} (wrt core ϵ_{N} = **2.5** μ m)
 - Conservative!: nominal LIU beam e_N ≈ 1.65 um

¹Reasonable average distribution over very few measurements.

[5] P. Racano - Review of halo measurements at Large Hadron Collider with collimator scans. University of Rome La Sapienza - 2019.

Some Summary Numbers

	Protons – 2021	lons – 2021
Beam emittance $\epsilon_{\rm N}$ [µm]	(2.5)	(2.5)
TCP ap. (σ_{beam} for given ϵ_{N})	6.7	4.2
Max orbit jump at TCP [% σ_{beam}]	5.9	3.7
Relative losses/jump [1/% σ_{beam}]	7e-6	2e-4
Max relative losses	4.1e-5	7.4e-4
Nominal beam intensity [particles]	3.9e14 [7]	2.2e11 [7]
Max particles lost at TCPs	1.6e10 p	1.6e8 ions
TCP BLM Th. RS06 (10 ms)	1.9e10 p @3TeV ¹	1.6e8 ions @1.18TeV/A ²
TCP BLM Th. RS07 (82 ms)	1.6e11 p @3TeV ¹	3.2e8 ions @1.18TeV/A ²

- Assuming the (reasonable) worst flux jump scenario, we would be just below dump threshold for both protons and ions.
- Note: RS06 (10ms) and RS07 (82ms) to be compared with typical flux jump rise time (order of 50 ms)

¹ From lossmap@3TeV, using present threshold strategy ² From lossmap@2.51TeV: scaled down to 1.18 TeV/A

Comparison to other observations

- **Loss-map** performed during **proton** ramp (@3 TeV) shows that **thresholds** (especially on **RS06**) might be **tighter than** what they **should/could be**
 - Likely, a factor of a few to gain BLM thresholds due to collimation losses currently being reviewed by the BLM Threshold WG
- During **2018** run, beam losses due to **ground-motion-induced orbit jumps** (around 20-30Hz) of the order of **10%** σ_{beam} [6] stronger than a flux jump, and at top energy
 - Losses of about 1-2e10 protons

CERN

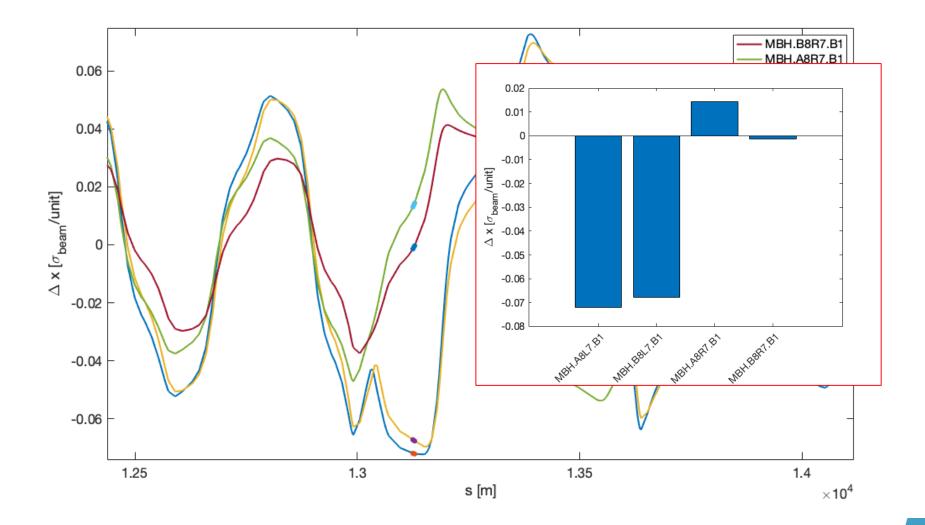
- **x5 below dump threshold** (at least at TCPs on RS06, RS07, RS08)
- During the ramp collimator jaws move in steps of the order of ~2% σ_{beam} in order to follow beam size reduction. (step time << 100 ms)
 - no critical BLM spikes ever observed
- While inserting crystal collimators (~20% σ_{beam}) slow loss up to 1.2e8 ions observed
 - Compatible with assumption of similar tail population distribution as for protons
- 10 Hz ion-fill dumps were triggered by orbit distortion of ≈15% σ_{beam} and ≈110% BLM_{thresholds}
 - Scaling to flux jump case, one would be at about 66% of BLM_{thresholds}
 - Assuming 2.51 TeV/A! Margin would increase at 1.18 TeV/A.

Conclusions

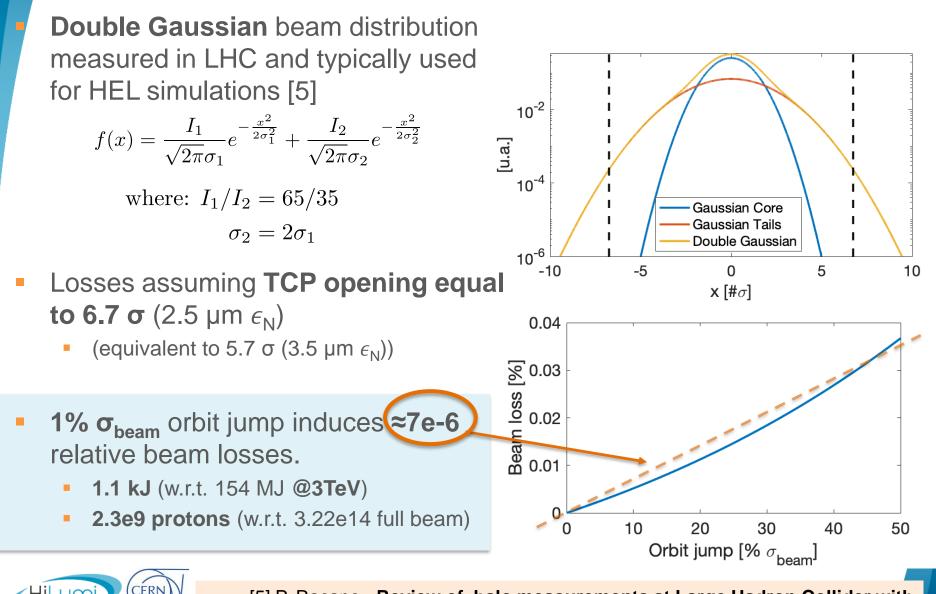
- Many unknowns, but trying to take all known margins
- In Run 3 we expects several orbit jumps at the TCPs (worst case):
 - up to **5.9% of σ_{beam} at 3 TeV** for protons
 - up to 3.7% of σ_{beam} at 1.18 TeV/A for ions
- With the present BLM thresholds, such jumps could induce beam losses just below dump threshold
 - Using very pessimistic assumptions on flux jumps!
 - Possible to gain margin working on the threshold settings
 - Under discussion among BLM Threshold WG independently from flux jumps.
- Consistent with several observations:
 - Lossmaps @3 TeV with protons
 - Ground-motion-induced losses observed in 2018
 - End-of fill crystal collimator insertion
 - 10Hz-related ion-fill dumps

CERN

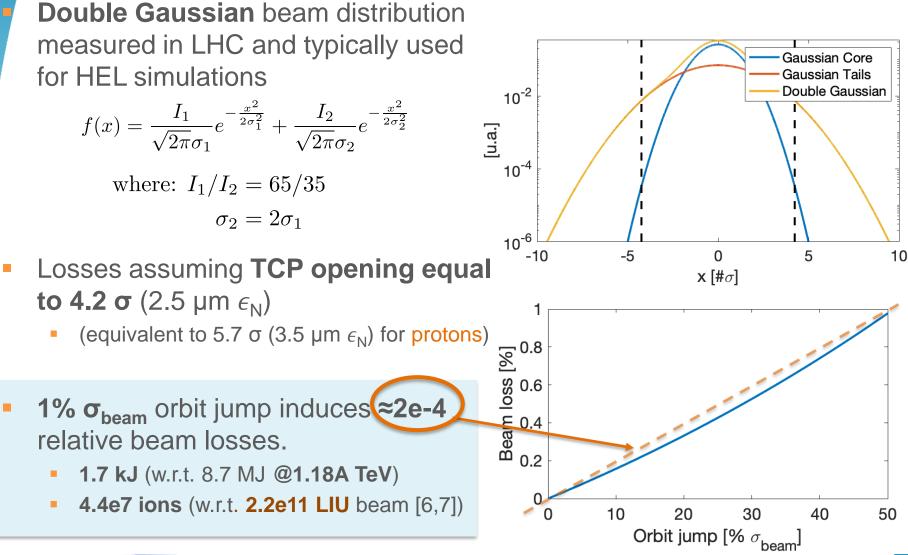
11T dipoles in LHC are considered safe (regarding flux jumps)


Will give us the opportunity to better evaluate the impact of RQX in HL-LHC

Backup

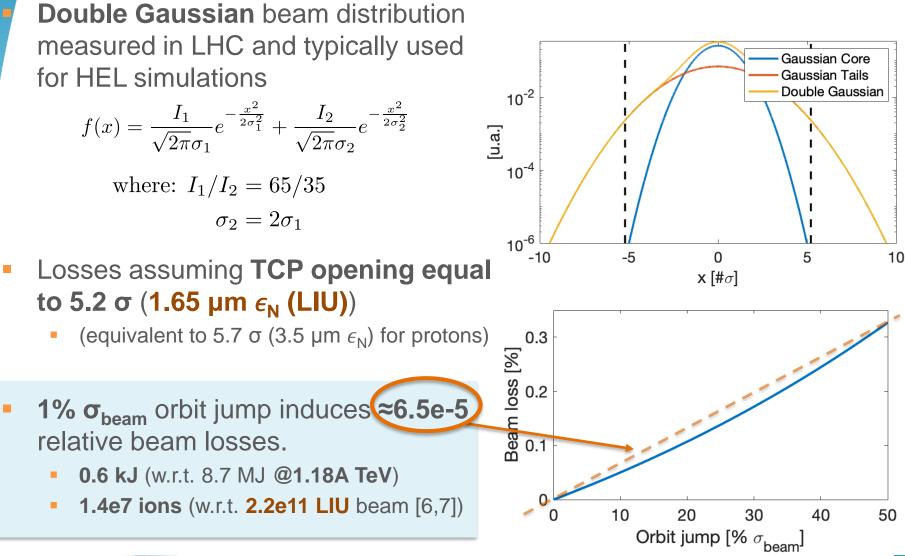

Impact of 11T @TCP @1m beta* @7TeV

CERN

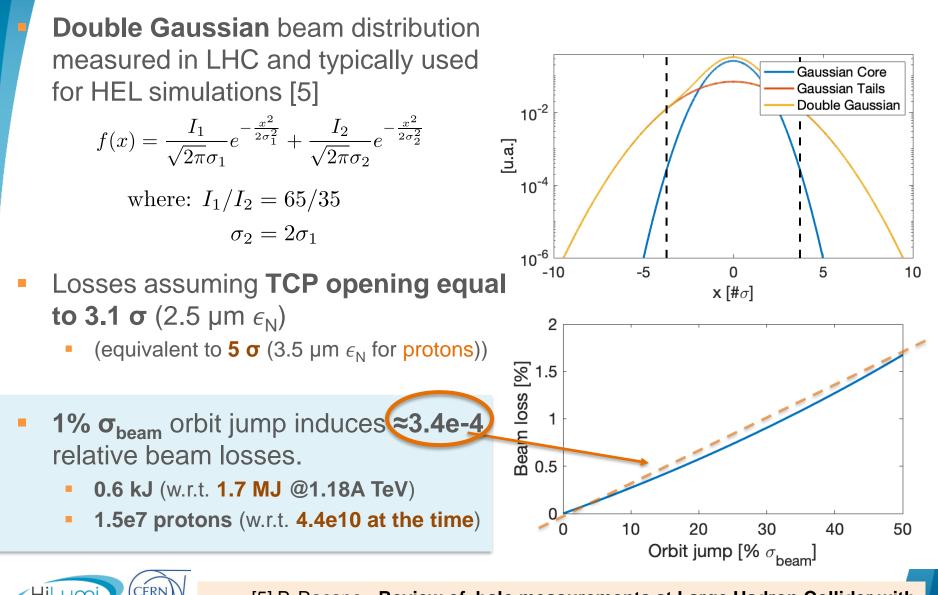

IL-LHC PROJEC

Impact on beam losses (~LHC design protons)

[5] P. Racano - Review of halo measurements at Large Hadron Collider with collimator scans. University of Rome La Sapienza - 2019.


Impact on beam losses (~LHC ions)

[6] J.M. Jowett - The 2018 Heavy-ion Run of the LHC <u>IPAC2019</u>
 [7] R.Tomas - HL-LHC desiderata during Run 3 <u>Montreux2020</u>

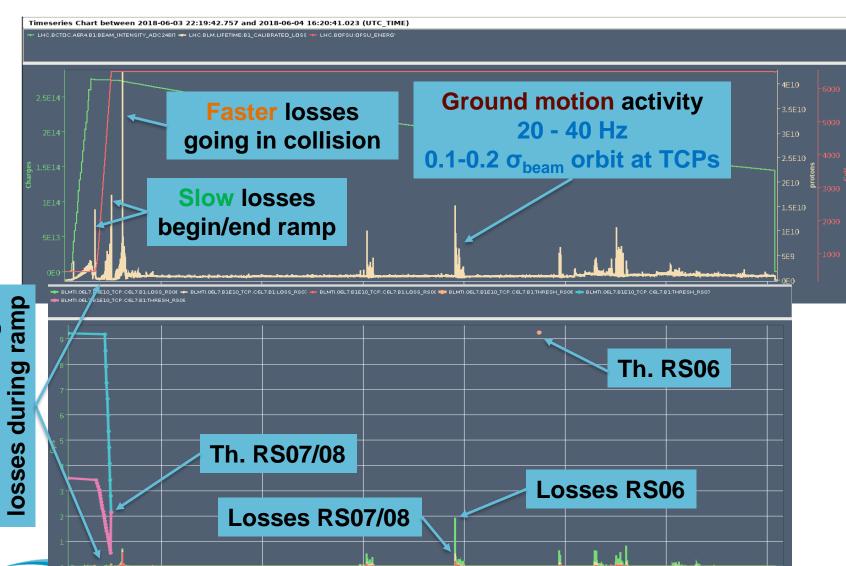

Impact on beam losses (LIU ions)

[6] J.M. Jowett - The 2018 Heavy-ion Run of the LHC <u>IPAC2019</u> [7] R.Tomas - HL-LHC desiderata during Run 3 <u>Montreux2020</u>

Impact on beam losses (~LHC ions - crystal)

[5] P. Racano - Review of halo measurements at Large Hadron Collider with collimator scans. University of Rome La Sapienza - 2019.

Analysis of other observations



Ground motion – proton (Fill 6757)

Some observables (losses at TCPs)

We were about x5 below dump threshold on RS06-RS07-RS08 @TCPs

UTC TIME

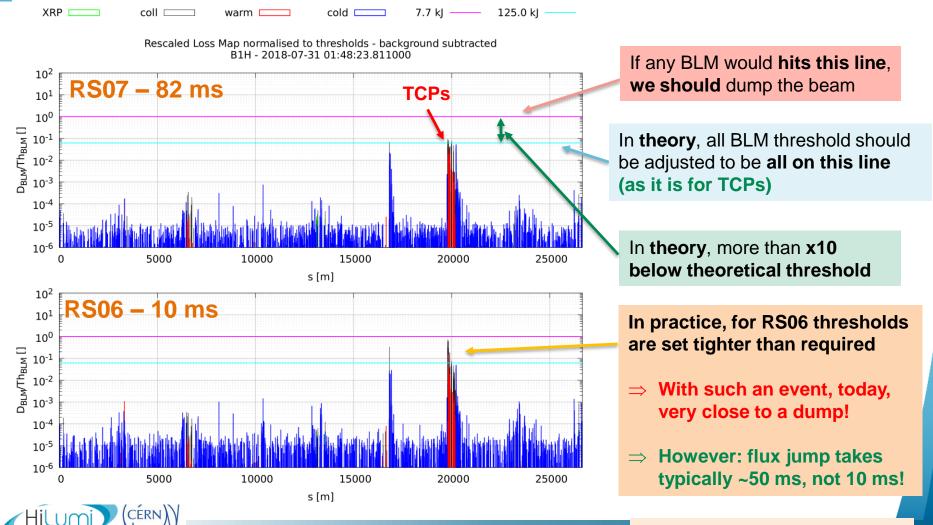
No fast nor big

04:00

06:00

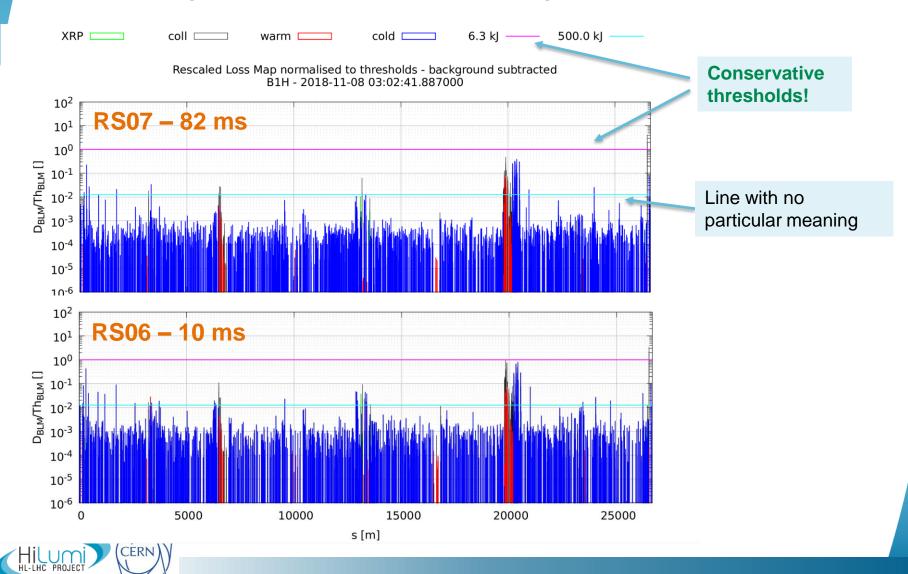
16:00

12:00


16

Loss Map @3 TeV

Loss-map measured at 3 TeV (B1)


- Measurement performed loosing a pilot (8-9e10 protons) in ~5 s.
- Rescaling data assuming to loose 1.6e10 protons (assumed in slide 5) for RS06/07:

Courtesy A. Mereghetti ¹⁸

Loss Map measured at 2.51 TeV/A scaled to 1.18 TeV/A

Assuming present thresholds, assuming to loose 1.6e8 ions

Crystal Collimator test (Fill 7454)

Intensity loss during crystal insertion

Crystal		FB	СТ		BCT			
(Fill 7454)	l _{in} (Ch)	I _{fin} (Ch)	∆I (Ch)	$\Delta I/I_{in}$	I _{in} (Ch)	I _{fin} (Ch)	∆I (Ch)	$\Delta I/I_{in}$
B1H	3.64e12	3.63e12	1e10	2.7e-3	3.8e12	3.79e12	1e10	2.6e-3
B1V	3.57e12	3.56e12	1e10	2.8e-3	3.73e12	3.72e12	1e10	2.7e-3

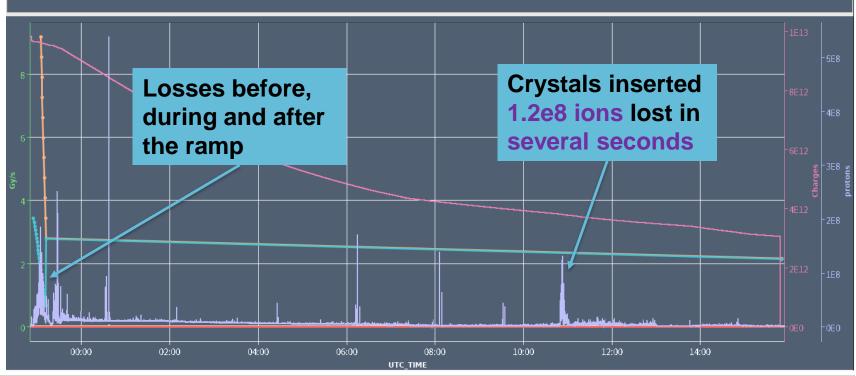
Main considerations:

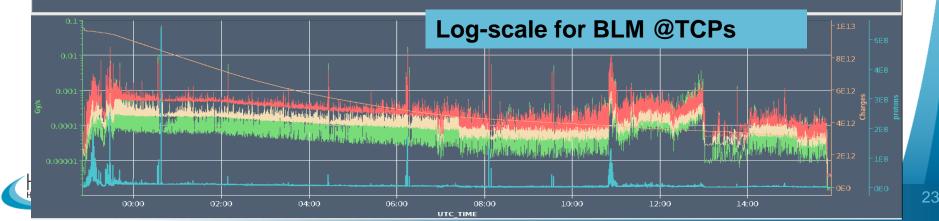
CERN

- FBCT are calibrated using BCT and the difference of absolute value between the two signal can be due to:
 - problems of calibration
 - presence of de-bunched beam to which FBCT are not sensitive
- No visible intensity loss when inserting crystals in B2:
 - > Other observation shows B2 crystals primary collimation stage, thus:
 - we didn't enter of the same fraction of sigma with the crystals in the two beam (but I doubt it because the beating should be <5%)
 - the population in the B2 tails between 5.0 s and 4.75 s is less than in B1 and below the sensitivity of FBCT and BCT.
- Consider that we were in stable beams from several hours, and this is only one "measurement". Thus, any extrapolation can have significant errors.

Fill 7454: crystal insertion

Timeseries Chart between 2018-11-18 22:49:49.270 and 2018-11-19 15:53:57.967 (UTC_TIME) 🖚 BLMTI.06L7.B1E10_TCP.C6L7.B1:L0SS_RS0# 🗰 BLMTI.06L7.B1E10_TCP.C6L7.B1:L0SS_RS0; 🗰 BLMTI.06L7.B1E10_TCP.C6L7.B1:L0SS_RS0# 🗰 BLMTI.06L7.B1E10_TCP.C6L7.B1:THRESH_RS07 🛶 BLMTI.06L7.B1E10_TCP.C6L7.B1:THRESH_RS07 🕶 LHC.BCTDC.A6R4.B1:BEAM INTENSITY ADC24BIT 🕶 LHC.BLM.LIFETIME:B1 CALIBRATED LOSS **Crystals inserted** Losses before, 1.2e8 ions lost in during and after several seconds the ramp 02:00 06:00 00:00 04:00 08:00 10:0012:00 14:00 UTC TIME


 No major BLM signal observed, despite 1.2e8 ions lost in total, but over several seconds.



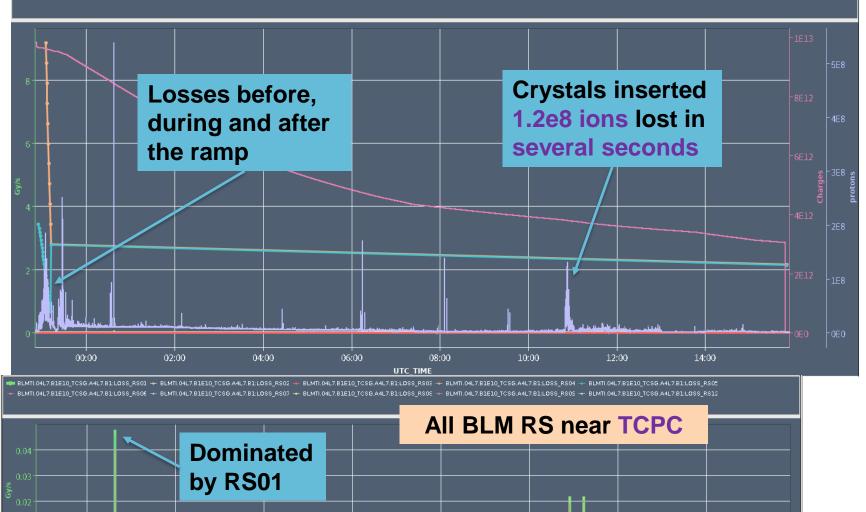
Fill 7454: crystal insertion

Timeseries Chart between 2018-11-18 22:49:49.270 and 2018-11-19 15:53:57.967 (UTC_TIME)

BLMTLOGL7.B1E10_TCP.CGL7.B1-LOSS_RS0f + BLMTLOGL7.B1E10_TCP.CGL7.B1:LOSS_RS0f + BLMTLOGL7.B1E10_TCP.CGL7.B1:THRESH_RS07 + BLMTLOGL7.B1E10_TCP.CGL7.B1:THRESH_RS07
 LHC.BCTDC.AGR4.B1:BEAM_INTENSITY_ADC24BR + LHC.BLM.LIFETIME:B1_CALIBRATED_LOSS

Fill 7454: crystal insertion

Timeseries Chart between 2018-11-18 22:49:49.270 and 2018-11-19 15:53:57.967 (UTC_TIME)


00:00

02:00

04:00

06:00

BLMTI.06L7.B1E10_TCP.C6L7.B1:L0SS_RS0f + BLMTI.06L7.B1E10_TCP.C6L7.B1:L0SS_RS0f + BLMTI.06L7.B1E10_TCP.C6L7.B1:THRESH_RS07 + BLMTI.06L7.B1E10_TCP.C6L7.B1:THRESH_RS06
 LCC.BCTDC.A6R4.B1:BEAM_INTENSITY_ADC24BII + LHC.BLM.LIFETIME:B1_CALIBRATED_LOSS

08:00

UTC TIME

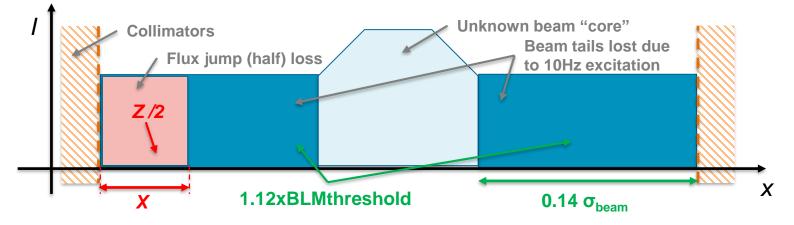
10:00

12:00

14:00

10 Hz data analysis

10 Hz-induced Pb-Pb fill dumps


Fill	BLM	RS	Losses [Gy/s]	Threshold [Gy/s]	Ratio Loss/Th	(Pk-Pk)/2 orbit [um / σ _{beam} *]	B1 / B2 intensity [10^11]
	BLMTI.04R6.B2I10.TCDSA.A4R6.B2	1	0.21	0.1274	1.65	48 / 0.13	0.97/1.00
		2	0.21		1.65		
		3	0.21		1.65		
7442		4	0.20		1.57		
7442		5	0.19		1.49		
		6	0.14		1.10		
	BLMTI.05L7.B1E10_TCSG.A5L7.B1	8	0.0591	0.0583	1.01		
		9	0.0297	0.0291	1.02		
7447	BLMTI.04R6.B2I10.TCDSA.A4R6.B2	1	0.1278	0.1274	1.003	60 / <mark>0.16</mark>	1.21 /1.20
1441	BLMTI.04L1.B1I10_TCTPH.4L1.B1		0.0039	0.0035	1.11	00/0.10	1.21/1.20
		8	0.0584	0.0584	1.002		
7458	BLMTI.05L7.B1E10_TCSG.A5L7.B1		0.0354	0.0291	1.21	58 / 0.15	1.01/1.04
	BLMQI_13R7.B1E10_MQ		0.0035	0.0034	1.03		
	BLMTI.04L1.B1I10_TCTPH.4L1.B1	7	0.0039	0.0035	1.12		
7450	BLMQI_13R7.B1E10_MQ		0.0036	0.0034	1.05	54 / 0.14	0.00/4.00
7459		8	0.0603	0.0583	1.03	54 / 0.14	0.99 /1.02
	BLMTI.05L7.B1E10_TCSG.A5L7.B1		0.0315	0.0291	1.08		
7482	BLMQI_13R7.B1E10_MQ	8	0.0036	0.0034	1.06	66 / 0.17	1.46/1.45
	BLMTI.05L7.B1E10_TCSG.A5L7.B1		0.0597	0.0583	1.02	00/0.17	1.40/1.40

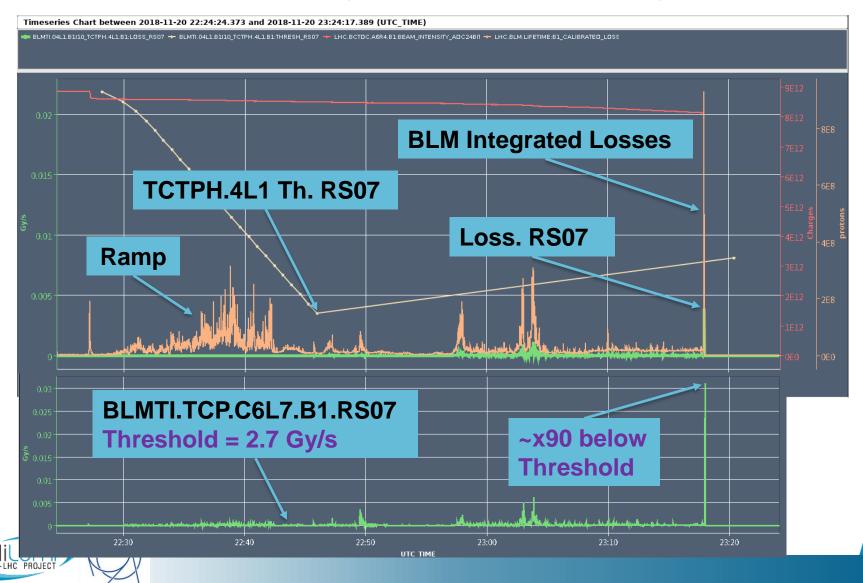
* β_x @TCP \approx 150 m $\rightarrow \sigma_{\text{beam}} \approx$ 375 µm @2.51 TeV/A @2.5 um ϵ_{N}

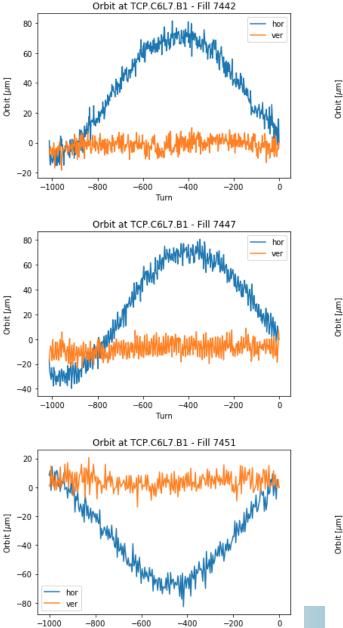
CERN

Extrapolation of 10Hz dumps to flux jumps

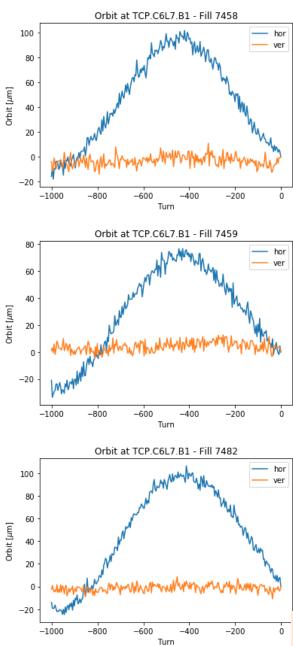
- Typically dumping on RS>08 (>655 ms). A few dumps on RS07 (82 ms)
- Worst case on RS07 (fill 7459 @2.51 TeV/A):
 - 1.12xBLM_{threshold} for a orbit jitter of 0.14 σ_{beam} (Pk-Pk)/2 and B1 of 0.99e11 ions
- Assuming the following scenario (not to scale):

- Re-normalizing for LIU intensity 2.2e11; $\epsilon_N = 2.5$ um; 0.037 σ_{beam} jump:
 - neglecting normalization wrt to energy (1.18 TeV/A instead of 2.51 TeV/A)


$$Z = 1.12 \times \frac{0.037}{0.14} \times \frac{2.2}{0.99} = 0.66 \qquad => 66\% \text{ BLM}_{\text{threshold}}$$


Fill 7459 – 10Hz-induced dump

Dumped on TCTPH.4L1, but ~x90 below threshold at TCPs


• This is **normal** for ions! -> cleaning efficiency locally at TCPs is low. Fragments lost downstream

Turn-by-Turn View

Turn

max-min value in data set (no averaging)

7442

/ · · · -				
Delta	pos	at	TCP.C6L7.B1=	96.92356658966669
7447				
Delta	pos	at	TCP.C6L7.B1=	120.26509331118783
7451				
Delta	pos	at	TCP.C6L7.B1=	94.27792197679815
7458				
Delta	pos	at	TCP.C6L7.B1=	116.22714589768549
7459				
Delta	pos	at	TCP.C6L7.B1=	107.74611960443664
7482				
Delta	pos	at	TCP.C6L7.B1=	131.17636981857282

Courtesy M. Schaumann²⁹

Final Table

Some summary numbers

	Prot	tons	lons			
	~LHC	LHC-2021	LHC- crystal	LHC-10Hz dump	LHC	LHC-LIU
Beam emittance ϵ_{N} [µm]	(2.5)		(2.5)	(2.5)	(2.5)	1.65 [7]
TCP ap. ($\sigma_{beam} \epsilon_N$ =3.5 [µm])	5	.7	5	5.7	5.7	
TCP ap. (σ_{beam} for given ϵ_{N})	6	.7	3.7	4.2	4.2	5.2
Max orbit jump at TCP [% σ_{beam}]	5.9		18.6	14	3.7	4.6
Relative losses/jump [1/% σ_{beam}]	7e-6		3.4e-4	2e-4	2e-4	6.5e-5
Max relative losses	4.1	4.1e-5		2.8e-3	7.4e-4	3e-4
Total beam intensity [particles]	3.2e14 [8] 3.9e14 [7]		4.4e10	9.9e10	1.6e11 [6]	2.2e11 [7]
Max particles lost at TCPs	1.3e10	1.6e10	2.8e8	2.8e8	1.2e8	6.6e7
Observed loss [particles]			1.2e8 (during several s)	3.9e-3 Gy/s RS07	-	-
BLM Th. RS06 (10 ms) @3TeV	1.9e10 p	1.9e10 p		0.1274 Gy/s	9.5e10/20 8= <mark>4.6e8</mark>	-
BLM Th. RS07 (82 ms) @3TeV	1.6e11 p 1.6e11 p			3.5e-3 Gy/s	7.6e11/20 8 = <mark>3.7e9</mark>	-

[6] J.M. Jowett - The 2018 Heavy-ion Run of the LHC <u>IPAC2019</u> [7] R.Tomas - HL-LHC desiderata during Run 3 <u>Montreux2020</u> [8] LHC Design Report