WISArD Collaboration Meeting, March 19-20, 2020, Caen, France

Beta backscattering measurements

Federica Cresto

LPCC, Laboratoire de Physique Corpusculaire de Caen CENBG, Centre d'Etudes Nucleaires de Bordeaux – Gradignan

Motivation

First results: error budget (November 2018)

	Source	Uncertainty	$\Delta \tilde{a}_{\beta\nu} (10^{-3})$
background	false coinc.	8%	< 1
proton	detector calibration	0.2%	2
	detector position	$1 \mathrm{mm}$	< 1
	source position	$3 \mathrm{mm}$	3
	source radius	$3 \mathrm{mm}$	1
	B field homogeneity	1%	< 1
	silicon dead layer	$0.3~\mu{ m m}$	5
	mylar thickness	$0.15~\mu{ m m}$	3
$\operatorname{positron}$	backscattering	10%	15
	threshold	$12 \mathrm{keV}$	8
total			19

OBJECTIVE: characterization of backscattering of β 's

- Detection threshold as a function of E_{e} and θ_{inc}
- Validation and constraints for GEANT4 simulations

HOW TO ACHIEVE IT:

- Reproduction of the experimental set-up and measuring conditions with GEANT4
 - > runs taken with different E_e and θ_{inc}
 - > varying models for backscattering computation
- Convolution of simulations with the response function • of the detector
- Comparison of the continuum of β spectrum

Experimental set-up – 2019

- <u>Source ⁹⁰Sr:</u>
 - $\sim Q_{\beta} = 0.546 \text{ MeV}$
 - > Monoenergetic electrons via B field
 - Collimator (radius = 0.2 cm)
 - > $E_{e^-} = 0.7 1.8 \text{ MeV}$
- <u>Cavity:</u>

- Air (no vacuum)
- > Trigger on e-
 - plastic scintillator
 - 100 μm thickness
- + 2 optical guides coupled with PMs

Electron trigger with optical guides and PMs

Experimental set-up - 2019

- <u>Cavity:</u>
 - > Plastic scintillator (rotatable)
 - radius = 1 cm
 - length = 5 cm
 - → collecting data with different electron incident angles

Plastic scintillator fixed on a rotatable support

3

Data acquisition - energy spectra

- 13 runs varying 0.7 MeV < E_e < 1.8 MeV at different incident angles with respect to the scintillator (0°,20°,40°)
- Reconstruction of the QDC spectra
- Gaussian+pol1 fits in good agreement with the data

Geant4 – experimental set-up

Source ⁹⁰Sr:

- Circular source of radius = 0.2 cm in x-y plane (reproducing collimator)

 - Monoenergetic e⁻ e⁻ emission along z axis 10⁶ events generated

<u>Set-up geometry:</u>

- Simulations performed in air
- Possibility to rotate the scintillator to study the effects of the different e⁻ incident angles

Caen, 19th March 2020

WISArD Collaboration Meeting

Geant4 simulation $-E_{2} = 1$ MeV, $\theta = 0^{\circ}$

- Simulation performed by varying the algorithm used for backscattering computation (*EM_opt4, Single Scattering, Wentzel-VI, Goudsmit-Sounderson...*)
- Convolution of the simulated spectra with the detector response function
- Superposition of experimental and simulated spectra

Configuration: $\theta = 0^{\circ}$, $E_{e} = 1.0 \text{ MeV}$

Caen, 19th March 2020

CONDITIONS

- Two examples for each θ (0°, 20°, 40°) reported
- All simulations performed with MSC Goudsmith-Sounderson model

RESULTS

- No significant differences between higher and lower energies
- Seems to be a better reproduction with lower angles (at a given energy)
- Systematic discrepancy just before the energy peak
 → geometry reproduction?

New tests to be performed - ongoing

New tests on e⁻ backscattering

New tests on e- backscattering will be performed at CENBG Experimental set-up and DAQ system → mounted and available for data taking

New tests on e⁻ backscattering

New tests on e- backscattering will be performed at CENBG Experimental set-up and DAQ system → mounted and available for data taking

Results tests SiPM S13360- 13/02/2020

The apparatus to be tested is composed of two separate parts to be assembled:

- Hamamatsu module C12332-01 (driver circuit)
- Hamamatsu MPPC (SiPM) S13360-60CS
 - \rightarrow 50 um pitch
 - \rightarrow 6.0x6.0 mm effective photosensitive area
 - → 14400 pixels

The tests have been performed by means of two different experimental set-up:

Monoenergetic e^{-} beam ($E_{e} \le 1.8$ MeV)

SiPM 13360-6050CS

LED source (E > 1.8 MeV)

Experimental set-up

photons

Experimental set-up

The SiPM output signal can be displayed on the oscilloscope \rightarrow useful for amplitude measurements

DS0X1204G, CN59047259: Mon Feb 10 23:25:08 2020

QDC spectra – Electron beam

Energy distribution - electron beam

Energy-amplitude calibration

Tests with the LED source

QDC spectra – LED source

OBS: ∽ QDC spectra

- 5 runs, by varying the amplitude
 290 mV < A < 950 mV
- Correspondent energy
 1.34 MeV < E_{led} < 5.10 MeV
- Gaussian peak shapes

Energy distribution - led source

Saturation point

The amplitude of the LED source has been varied in order to spot the saturation point

Signal saturation begins at 1.6 V

The correspondent value of energy saturation can be computed via the energy-amplitude calibration

Tests with the LED source

The saturation point (A=1.6 V) corresponds to E = 7.4 MeV

Conclusions

- ✓ Positive results of the tests performed → linearity in energy calibration until the saturation point (A=1.6 V, correspondent to E = 7.4 MeV)
 - → SiPM can be used in the [0, 2] MeV energy range for the measurements with ¹¹⁴In (also in [0, 4] MeV energy range for double-count measurements)

