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Motivation
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                              OBJECTIVE:

                              characterization of backscattering of β’s

● Detection threshold as a function of Ee and θinc

● Validation and constraints for GEANT4 simulations

First results: error budget (November 2018)

                              HOW TO ACHIEVE IT:

● Reproduction of the experimental set-up and 
measuring conditions with GEANT4 

➢ runs taken with different Ee and θinc 
➢ varying models for backscattering computation 

● Convolution of simulations with the response function 
of the detector

● Comparison of the continuum of  spectrumβ  
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Experimental set-up – 2019

90Sr
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PM1 PM2

Scintillator

e-

Trigger

x axis

1.1 cm

2.44 cm

0.01 cm

● Source 90Sr:
➢ Q  β= 0.546 MeV
➢ Monoenergetic electrons via B field
➢ Collimator (radius = 0.2 cm)
➢ Ee- = 0.7 – 1.8 MeV

● Cavity:
➢ Air (no vacuum)
➢ Trigger on e- 

-  plastic scintillator
- 100 m thicknessμ

➢    + 2 optical guides coupled with PMs

Electron trigger with optical guides and PMs
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Experimental set-up – 2019

90Sr

➡B

PM2

e-

z axis

x axis

1.1 cm

2.44 cm

0.01 cm

Scintillator

Trigger

● Cavity:
➢ Plastic scintillator (rotatable) 

- radius = 1 cm
- length = 5 cm

Plastic scintillator fixed on a rotatable support

→ collecting data with different       
    electron incident angles

PM1

5 cm
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Data acquisition – energy spectra

● 13 runs varying 0.7 MeV < Ee < 1.8 MeV at different 
incident angles with respect to the scintillator 
(0°,20°,40°)

● Reconstruction of the QDC spectra

● Gaussian+pol1 fits in good agreement with the data
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Geant4 – experimental set-up
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Trigger

● Scintillator

Scintillator 
support

Support 
structure

Support 
structure

e-

Source 90Sr:

✔ Circular source of radius = 0.2 cm in x-y plane
(reproducing collimator)

✔  Monoenergetic e- 
✔  e- emission along z axis

z axis

x axis

Set-up geometry:

✔ Simulations performed in air
✔ Possibility to rotate the scintillator to study the 

effects of the different e- incident angles

106 events generated

z axis

y axis

e-

Backscattering angles are defined with 
respect to the positive z axis in the zy plane

Backscattered e-
backscattering angles > 90°

pz < 0
5
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Geant4 simulation  –  Ee = 1 MeV, θ = 0°
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Peak at 20 keV
s=100 m @ μ Ee-=1 MeV  

Energy peak lower 
than 1 MeV because 

of trigger+air

TRIGGER

≈0.1% of incoming e-

→ backscattering in    
trigger negligible

Scintillator

≈2.2% of incoming e-

   backscattering in ECal

6
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Convolution exp. data - simulation
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● Simulation performed by varying the 
algorithm used for backscattering 
computation (EM_opt4, Single Scattering, 
Wentzel-VI, Goudsmit-Sounderson...)

● Convolution of the simulated spectra with 
the detector response function

● Superposition of experimental and 
simulated spectra

GS MSC model reproduces data better

Simulations performed for all θ and Ee 

Simulation curves systematically 
underestimate the continuum 

background
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Convolution exp. data - simulation
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CONDITIONS             
● Two examples for each  (0°, θ

20°, 40°) reported

● All simulations performed 
with MSC Goudsmith-
Sounderson model

RESULTS            
● No significant differences 

between higher and lower 
energies

● Seems to be a better 
reproduction with lower 
angles (at a given energy)

● Systematic discrepancy just 
before the energy peak

→ geometry reproduction?
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Convolution exp. data - simulation
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90Sr
➡B

PM1 PM2

Scintillator

e-
Spectrometer 

collimator

1.1 cm

2.44 cm

0.01 cm

5 cm

z axis

1st mylar foil

2nd mylar foil

5 cm

Trigger2.7 cm

4.3 cm
12.5 μm

25 μm

0.03 cm

Collimator

1st mylar
● foil

2nd mylar
● foil

Spectrometer collimator

Collimator

Trigger

Scintillator

Support 
structure

Scintillator 
support

Support 
structure

z axis

x axis

All simulations re performed
by considering

the spectrometer geometry

Point source → e- emitted in a cone with  θspread = 16.7° 

Mylar foils and spectrometer collimator reproduced

ONGOING
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Convolution exp. data - simulation
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Example: 
● Ee = 1 MeV, =0°θ

● 106 events generated
● GS MSC model implemented     

LOG SCALE

LINEAR SCALE

New simulations 
better reproduce 

experimental 
spectra



New tests to be performed - ongoing
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New tests on e- backscattering
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New tests on e- backscattering will be performed at CENBG
Experimental set-up and DAQ system → mounted and available for data taking

Detector
(SiPM)

Source
(207Bi)

Detector collinear 
with the z axis for 

the time being
(expected 
upgrade: 
rotation)

z axis

● Box of Al 5x5x5 mm
● Source may be placed at 

the different z positions
● Collimator r=1 mm

● Trigger 200 um
● Vacuum
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New tests on e- backscattering
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New tests on e- backscattering will be performed at CENBG
Experimental set-up and DAQ system → mounted and available for data taking

Source
(207Bi)

z axis

● Box of Al 5x5x5 mm
● Source may be placed at 

the different z positions
● Collimator r=1 mm

● Trigger 200 um
● VacuumBoth e- and γ 

emitted

13



Results tests SiPM S13360– 13/02/2020
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Experimental set-up

The apparatus to be tested is composed of two separate parts to be assembled:

✔ Hamamatsu module C12332-01 (driver circuit)
✔ Hamamatsu MPPC (SiPM) S13360-60CS

→ 50 um pitch
→ 6.0x6.0 mm effective photosensitive area
→ 14400 pixels

Module C12332-01

SiPM 13360-6050CS

The tests have been performed by means of two 
different experimental set-up:

Monoenergetic e- beam (Ee ≤ 1.8 MeV)

LED source (E > 1.8 MeV)
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Experimental set-up

90Sr

➡B

Plastic 
scintillator

e-

SiPM

Discriminator +
QCD FASTER

Led source
photons

SiPM

Discriminator +
QCD FASTER

Optical fiber

Monoenergetic electron beam LED source
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Experimental set-up

The SiPM output signal can be displayed on the oscilloscope
→ useful for amplitude measurements
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QDC spectra – Electron beam

✔ QDC spectra 
✔ 6 runs, 0.8 < Ee < 1.8 MeV
✔ Gaussian peak shapes
✔ Energy calibration → linearity

OBS:

18



20

Energy-amplitude calibration
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Tests with the LED source

Additional tests have been performed with the LED source
by varying the signal amplitude 

The correspondent energy values are given
by the Energy-Amplitude calibration (linear fit)
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QDC spectra – LED source

✔ QDC spectra 
✔ 5 runs, by varying the amplitude

290 mV < A < 950 mV
✔ Correspondent energy

1.34 MeV < Eled < 5.10 MeV

✔ Gaussian peak shapes

OBS:
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Saturation point

The amplitude of the LED source has been varied in order to spot the saturation point

Signal saturation begins at 1.6 V

The correspondent value of energy saturation can be computed
via the energy-amplitude calibration 
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Tests with the LED source

The saturation point (A=1.6 V) corresponds to E = 7.4 MeV
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Conclusions

✔ Positive results of the tests performed → linearity in energy calibration until the 
saturation point (A=1.6 V, correspondent to E = 7.4 MeV)

→ SiPM can be used in the [0, 2] MeV energy range for the measurements with 114In      
    (also in [0, 4] MeV energy range for double-count measurements)

✔ Hamamatsu module C12332-01 (driver circuit) +
Hamamatsu MPPC (SiPM) S13360-60CS A second module ordered

(~ 670 €)
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✔ Tests performed on the two new SiPMs S13360-60CS 
➢ same experimental set-up (e- beam + led source)
➢ linearity in energy calibration, but different saturation points

(correspondent to E = 8 and 15 MeV respectively) → effects of the different HV 
applied?

➢ battery of tests performed by varying the HV applied
→ parallel curves E-Amplitude
→ not seen the saturation point for lower energies → more powerful led 

                  needed

ONGOING


