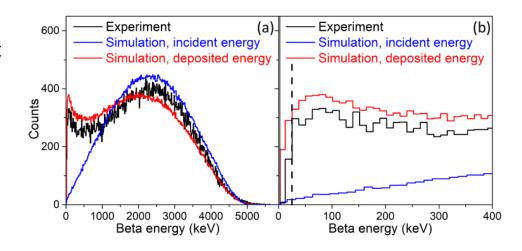


Quick discussion on systematics

Thursday 19 th March 2020

Xavier Fléchard


Main Systematics from positron

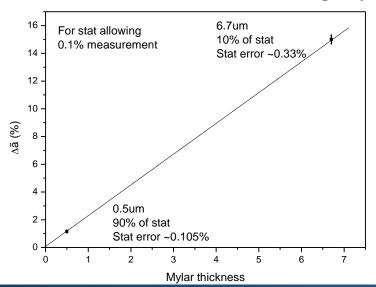
Backscattering on positron detector:

- -Presently 0.2% with detection threshold at 25 keV & 15% error on G4 correction
- -Reduced below 0.1% with 10 keV threshold, further reduced with progress on G4 error
 - → lower det threshold
 - → test G4 sim with backscat measurements

Threshold uncertainty:

- -Presently 0.8% for ΔE_{th} = 12keV
 - -low stat
 - -bad det knowledge
- -Reduced by ~2 with 10keV threshold
- -Reduced by $^{\sim}6$ with ΔE_{th} = 2keV

- \rightarrow characterization of detector in the 0-30 keV range -calibration sources (tests @ ISOLDE γ & e-) -low intensity electron gun (under dev.)


→ use alpha source for normalization (between tests & experiment)

Main Systematics from positron

Backscattering on catcher:

- -Presently 2.2% with ~6.7um mylar thickness & 15% error on G4 correction
- -Gain of factor ~13 with 0.5 mylar thickness for G4 error but then uncertainty on thickness not negligible (+-20%)... Real gain only factor ~8 \rightarrow ~ 0.3% error on \tilde{a} Not enough...
- -To do better:
 - → Measure precisely the thickness (proton E loss?)
 - → Test G4 with e- source & several thickness
 - → Alternate 2 thickness during experiment → extrapolation @ 0 thickness

If linear effect: final error ~0.107%

Main Systematics from protons

Geometry:

- -Need for ~0.5mm precision on detector & implant to reduce error at 0.05 % level
 - → good mechanical design
 - → detector to monitor implantation profile (MCP + Resistive anode) to be ordered (but large) or designed...

Mylar thickness:

- -Presently 0.2% for uncertainty of 0.15um \rightarrow improved with statistics & new mylar 0.5+- 0.1um mylar \rightarrow 0.15% error (not enough)
 - → could be measured more precisely with proton shift
 - → effect included in extrapolation with 2 thickness

Si dead layer thickness:

- -Presently 0.5% for uncertainty of 0.3um \rightarrow improved if dedicated measurements
 - \rightarrow Precise measurement possible with α source at different angles (Eshift vs angle) (gain of factor ~10 seems possible)
 - → Need for dedicated setup

Detector calibration slope:

- -Presently 0.9% for relative uncertainty of 0.2% on slope
 - → need for very precisely known proton energy peaks (33Ar?)
 Several peaks with 1keV precision → 0.1-0.15% on ã, seems hard to do better...