

HTS Demonstrator Mechanics GaToroid Project

Jérôme Harray

February 7, 2020

GaToroid Project

- Demonstration of HTS technology
- Development of a prototype in scalable conditions
 - Coil box design to freeze magnet nominal position
 - Bolt stress state assessment

•

Contact modeling

	Gap open/ close?	Sliding allowed?	
Bonded	No	No	
Frictionless	Yes	Yes, $\mu = 0$	
Frictional	Yes	Yes, $F_{sliding} > F_{friction}$	

Pole - contact

- Contact between the **pole** & 1^{th} **tape stack** \rightarrow **frictionless**
- Pre-constraint check-point \rightarrow pressure inspection
- Pole material \rightarrow pre-constraint strategy with $\alpha_{pole} < \alpha_{rim}$

Pole - contact

- Contact between the **pole** & 1^{th} **tape stack** \rightarrow **frictionless**
- Pre-constraint check-point \rightarrow pressure inspection
- Pole material \rightarrow pre-constraint strategy with $\alpha_{pole} < \alpha_{rim}$

Windings - contact

- If resin assumed as **non-structural** \rightarrow **frictional** contact $\mu = 0.3$
- If resin keeps components altogether \rightarrow **bonded** contact
- Contact stress magnitude to keep the contact between components
- Warnings: **linear** model → **dynamic** effects & **crack** propagation dismissed

Windings - contact

- If resin assumed as **non-structural** \rightarrow **frictional** contact $\mu = 0.3$
- If resin keeps components altogether \rightarrow **bonded** contact
- Contact stress magnitude to keep the contact between components
- Warnings: **linear** model → **dynamic** effects & **crack** propagation dismissed

Coil box - contact

- Contact mainly subjected to shear from contraction & Lorentz forces
- Assumed all-time as **frictional** with $\mu = 0.3$

Coil box - contact

- Contact mainly subjected to **shear** from **contraction** & **Lorentz forces**
- Assumed all-time as **frictional** with $\mu = 0.3$

Isotropic tape model

- Tape material composition: 70% SS & 30% Cu ullet
- HTS cable with **insulation** composition: 19% SS & 81% Cu •
- **Stacked** layout \rightarrow **anisotropic** \sim orthotropic •
- Lack of data \rightarrow material model **simplification** ۲

Isotropic

Material configurations

- Use of Aluminium for structural components
- Different pre-constraint strategies:
 - 1. Stainless Steel pole
 - 2. Titanium pole
 - 3. No pole

Bolts - layout

- 30 x M8 bolts equally spaced along outer rim
- Pole falsely fixed at its centre
- Spacers **unpinned** in nominal conditions
- Fixed spacers configuration inspected

Bolts - modeling

- Load transmission
 - Thread in intermediate plate
 - Head surface on cover plate
- Bolt body simplified as **body line**
- **Pretension** applied on body line

Multi-step static analysis

(1) Bolt pretension

Multi-step static analysis

February 7, 2020

Multi-step static analysis

February 7, 2020

Results

February 7, 2020

Jérôme Harray | HTS Demonstrator Mechanics - GaToroid Project

Spacers - equivalent stress (1)

Spacers - equivalent stress (2)

C: coil friction - pole SS - coarse Equivalent Stress - spacers 2 Type: Equivalent (von-Mises) Stress Unit: MPa Time: 2 07/02/2020 13:33 172.49 Max 153.34 134.18 115.03 95.876 76.722 57.568 38.414 19.261 0.10687 Min

Spacers - equivalent stress (3)

C: coil friction - pole SS - coarse Equivalent Stress - spacers 3 Type: Equivalent (von-Mises) Stress Unit: MPa Time: 3 07/02/2020 13:34 187.27 Max 120 105.02 90.046 75.069 60.092 45.114 30.137 15.16 0.18309 Min

Coils - equivalent stress (1)

C: coil friction - pole SS - coarse Equivalent Stress - coil Type: Equivalent (von-Mises) Stress Unit: MPa Time: 1 07/02/2020 13:34

Coils - equivalent stress (2)

C: coil friction - pole SS - coarse Equivalent Stress - coil 2 Type: Equivalent (von-Mises) Stress Unit: MPa Time: 2 07/02/2020 13:34 **152.22 Max** 135.35 118.47 101.6 84.726 67.853

February 7, 2020

Coils - equivalent stress (3)

C: coil friction - pole SS - coarse Equivalent Stress - coil 3 Type: Equivalent (von-Mises) Stress Unit: MPa Time: 3 07/02/2020 13:35 148.11 Max 131.67 115.24 98.804 82.371 65.937 49.503 33.07 16.636 0.2024 Min

Bolts - bending moment

Radial displacement - bonded - SS pole

Radial displacement - frictional - SS pole

Radial displacement - frictional - Ti pole

Radial displacement - frictional - no pole

Configuration comparison

		Coil frictional SS pole	Coil bonded SS pole	Coil frictional Ti pole	Coil frictional No pole
Coils	Mean stress [MPa]	38	40	66	39
	Max stress [MPa]	148	117	324	97
	Max displacement [mm]	1.45	1.37	1.61	1.37
Spacers –	Mean stress [MPa]	49	53	67	45
	Max stress [MPa]	187	207	303	183
Bolts	Safety factor	1.62	1.63	1.64	1.62
Pole	Mean pressure [MPa]	6	12	29	
	Max pressure [MPa]	86	111	140	

Take-home message

- Stress state mainly lead by the **cool-down**
- Preload seems introducing unreasonably high-stress level
- Stiffness of spacers overestimated by omitting grade jumps
- Shear stress at contact interfaces $\sim 20 \text{ MPa} \rightarrow \text{resin cannot withstand contact}$
- Future investigation of configurations with **less preload** \rightarrow spacers in SS

home.cern