

MINISTERIO DE ECONOMÍA, INDUSTRIA Y COMPETITIVIDAD

Certro de Investigaciones Energéticas, Medicambientales y Tecnológicas

21

4 4 Silcon Tacker Electromagnetic Calcormeter

V+heavy flavor jets and constraints to PDFs in CMS

Juan Pablo Fernández Ramos (CIEMAT)

LHC-EW WG: Jets and EW bosons 30th March 2020

Introduction

- Measurements of σ(pp→Z/W+c/b) provide tests QCD predictions. Results sensitive to hard scattering process & associated soft QCD radiation (input to theory refinement & validation of MC techniques)
- Allows better understanding of proton structure.
 Z/W+c/b jets tests PDF for s,c,b.
- Background to some SM processes and in searches

Mentioning ...

SAMPLES

ttbar dileptonic

W+charm

- WAYS to IDENTIFY HF
 - •SV channel SV-in-jet

•HF-tagging

VARIABLES

- •SV mass
- •∆R(c-jet,jet)
- •Closest jet flavor
- Discriminants
 - Deep Neural Nets

•SL channel µ-in-jet

What can we do with all this?

Introduction

b-jet

W+charm

ΛΛΛΛ,

00000

Given a certain technique we are looking at properties of heavy flavor (HF) jets on ttbar (dileptonic and semileptonic) & W+charm for calibration purposes and then performing the particular analysis

- Signal is always OS (sign of electric charges of W and c are opposite)
- Background is 50% OS, 50% SS
- OS SS to get rid of symmetric background
 - SS distributions are subtracted from OS distributions

```
OS-SS turns HF-jets → c-jets enriched
```

OS-SS turns b-jets in $t\bar{t} \rightarrow performance of b vs \bar{b}$

Mentioning ways (tools/experimental techniques) to not only **identify the HF** but also **determine its charge** Ask for tagger with charge to be used for OS-SS Samples and Strategy (exp. introduction):

How are the measurements done from the experimental point of view ?

Samples

DATA: 2016 13 TeV (36 fb-1) or 2012 8 TeV (20 fb-1)

MC: W/DY+jets generated w. MADGRAPH + PYTHIA

Cross section normalized to $\sigma(pp \rightarrow Z/W + X)$ at NNLO calculated with FEWZ

Primary signal contribution:g-g & q-q processes (<5% from MPI)

Selection of W+c samples

- W \rightarrow ev, $\mu\nu$ plus jets with similar selection to Z+HF
- Identification of heavy flavor jet: μ or SV in jet from D-hadron inclusive decays or D^{*±}
- OS–SS subtraction to remove symmetric backgrounds

After OS-SS subtraction the purity in W+c of the resulting sample is > 80% (SL and SV channels) and >98% (D^{\pm} and $D^{*\pm}$ channels)

Results :

Comparison with predictions

Another technique :

 σ (Z+HF): Different contributions (from Z+c and Z+b ,production) present

Modeling strategy needed :

(I) choose the variables to separate the different contributions(II) make sure we model properly each of themThis is called template modeling and has two parts:

- Modeling properly the shape
- Accurate determination of tagging efficiency

Signal extraction (Z+c)

Z: Total # of observed Z+c/Z+b extracted from a χ^2 minimization fit of the Z+c/Z+b templates to the experimental distributions of vertex mass and JP discriminants

c/b separation clearer in the D* mode (the soft pion comes from the PV for c \rightarrow D* and not for b \rightarrow B \rightarrow D*)

 $\mu_{z+c}\,\&\,\mu_{z+b}$ in the 0.9-1.1 range

n = Number of events in data (after

 N_{i}^{Z+c} , N_{i}^{Z+b} = Number of Z+c, Z+b

Z+light, tt and VV)

subtraction of remaining background from

tanalogy official by cignificant theoretical uncertainties

JHEP 06 (2014), 120 (Z+bb @ 7TeV)

The b-hadrons are identified by means of displaced secondary vertices, without the use of reconstructed jets

5FS-based theoretical calculations may not be well suited to describe the collinear production of b-hadrons 19

Z + two b-jets : agreement in the dijet mass distribution

21

Conclusions

Evaluated W/Z + heavy hadron associated production, inclusive and differential (more in back-up)

Agreement with predictions from MadGraph5 amc@nlo and Madgraph renormalized to a FEWZ calculation.

There has been a lot of improvement in the last decades and there is more to come from both , theoretical and experimental results

Back up

Charm charge determination of W+c samples

•In the SL(D^{*}) channel the charm charge is that of the $\mu(D^*)$

Vertex-tracks

• In the SV channel, the charge of the SV vertex : Σq_{tracks}

• If vertex-charge == 0 use charge of closest PV-track ($p_T > 0.3 \&\& \Delta R(track, IVF-vertex) < 0.1)$. The sign of that track, the closest track to the Charm_{hadron} in the process of fragmentation, tells you whether we have a c or a cbar :

•Charge definition: OS if $\dot{c}h$ arges of the SV and the lepton from the W decay are opposite.

•OS:
$$Q_{W \rightarrow e(\mu)} \neq Q_{SV}$$

$$SS: Q_{W \to e(\mu)} = Q_{SV} \qquad 25$$

Semileptonic selection for Z and W analysis (SL channel)

• μ inside a jet (taking part of a secondary vertex for Z). This reduces the light contribution more than standard b-tagging algorithms.

• p_{T}^{μ} <25 GeV, with p_{T}^{μ}/p_{T}^{jet} <0.6, $|\eta^{\mu}|$ <2.5

- non-isolated, I_{comb}/p_{T}^{μ} >0.2

Semileptonic candidates:

 $4145 \ Z \rightarrow e^+e^ 5258 \ Z \rightarrow \mu^+\mu^ 52K \ W \rightarrow e\upsilon$ $32K \ W \rightarrow \mu\upsilon$

Relative contributions:

Z+c:25% Z+b:65% Z+light:5% Others:5% W+c:80% W+b:0.5% W+light:4% top:10% Others:6%

D[±] Selection for Z analysis (D[±])

Use jets with a 3 tracks secondary vertex & search for $D^{\pm} \rightarrow K^{\mp}\pi^{\pm}\pi^{\pm}$ resonant peak.

Non resonant bkg. in the signal region subtracted from the neighboring sidebands

490±48 D[±] (Z → $\mu^+\mu^-$) 375±44 D[±] (Z → e^+e^-) Z+c: ~60% Z+b: ~35% Others:<5%

Exclusive D selection for W analysis (SV channel)

Reconstructed secondary vertex in jet
 Vertex_mass>0.55 GeV and SV flight distance significance>3.5 to reduce light jet contamination
 In case of several jets with SV in the event, take the highest p_T jet

117K W → eυ 131K W → μυ W+c:75% W+b:0.5% W+light:15% top:6% Others:3.5%

 $19.2 \pm 0.6 \times 10^{3} D^{*\pm} (W \rightarrow \mu \nu)$

JHEP 06 (2014) 120 at √s = 7 TeV

Primary contribution:

Use $Z \rightarrow II$ (ee or $\mu\mu$)

 $Z+b\mathbf{b}$

and **1 or 2 b-tagged** jets & $\Delta R(I, j) > 0.5$

Testing two different flavour schemes for the choice of initial-state partons.

cross sec.	Measured	MADGRAPH	aMC@NLO	MCFM	MADGRAPH	aMC@NLO
	(pb)	(5F)	(5F)	(parton level)	(4F)	(4F)
sZ+1b	3.52±0.28	3.66±0.22	3.70 ^{+0.23}	3.03 ^{+0.30}	$3.11^{+0.47}_{-0.81}$	2.36 ^{+0.47}
sZ+2b	0.36 ± 0.07	0.37±0.07	0.29±0.04	0.29±0.04	0.38 ^{+0.06} -0.10	0.35 ^{+0.08} -0.06
sZ+b	3.88±0.22	4.03±0.24	3.99 ^{+0.25}	3.23 ^{+0.34}	3.49 ^{+0.52} -0.91	2.71 ^{+0.52}
sZb/Zj(%)	5.15 ± 0.25	5.35±0.11	5.38 ^{+0.34}	4.75 ^{+0.24}	4.63 ^{+0.69}	3.65 ^{+0.70} -0.55

Z+1b data favors five-flavour scheme(b massless).Z+2b favors 4FS.

 $\sim 2\sigma$ data vs MCFM (parton-level) cross section difference specific to the modeling of the Z+b-jets final state.

Test of $\boldsymbol{Q}_{\text{sv}}$ algorithm

• Using semileptonic sample for test (sample with a muon in a jet & IVF-vertex) :

• When the algorithm gives an answer: right 87% of the times, wrong 13% (after OS(87%)-SS(13%) subtraction we are left with 74% of the answers).

Newtex

Z+c Selection: b/c separation (discriminants)

Vertex mass (for semileptonic mode)

$$M_{\text{vertex}}^{\text{corr}} = \sqrt{M_{\text{vertex}}^2 + p_{\text{vertex}}^2 \sin^2 \theta} + p_{\text{vertex}} \sin \theta,$$

Correction included to account for unidentified neutral decay products

• JP (for D hadron modes): likelihood estimate of prob. of jet tracks to come from primary vertex The larger the IP of a track the more inconsistent w.r.t. PV

Modeling strategy

-7+c:

Shape : data driven (W+charm) [1st time]

Normalization taken from MC after applying vertex-efficiency corrections - 7+b :

Shape : from MC but corrected with data (ttbar)

Normalization from MC after vertex-efficiency corrections

- Z+light and Dibosons: shape and normalization from MC

- ttbar: Data driven

Comparison with MCFM (differential cross section ratio)

Preselection

Preselection of $Z{\rightarrow}$ ee and $Z{\rightarrow}\,\mu\mu$ plus jets

- $Z \rightarrow ee:$
 - Dielectron trigger thres-hold of 17 and 8 GeV
 - Electron Id Medium WP
 - pT(e)> 20 GeV, |η(e)| < 2.1
 - Isolated: Icomb/pT <0.15
 - Energy scale corrected
 - MC corrected for differences in Electron Id and Iso efficiencies

- $Z \rightarrow \mu \mu$:
 - DiMuon trigger thres-hold of 17 and 8 GeV
 - Tight selection
 - -pT(e)>20 GeV, $|\eta(e)|<2.1$
 - Isolated: Icomb/pT <0.2</p>
 - Momentum scale and resolution corrected
 (Rochester correction)
 - MC corrected for differences in Muon Trigger, Id and Iso

- Jets:
 - Jets anti-kT, R=0.5
 - JEC corrected, both in data and MC
 - pT(jet) > 25 GeV, |η(jet)| < 2.5

Cross section determination

 $\sigma(\mathbf{Z} + \mathbf{c}) = \frac{N_{\mathbf{Z} + \mathbf{c}}^{fitted}}{\epsilon_c^{\mathbf{Z} + \mathbf{c}} \mathcal{L}}$

;

Semileptonic mode							
Channel	N_{Z+c}^{signal}	\mathcal{C}_{Z+c} (%)	$\sigma(Z+c)$ [pb]				
$Z \rightarrow e^+e^-$	1066 ± 95	0.63 ± 0.03	$8.6 \pm 0.8 \pm 1.0$				
$Z \rightarrow \mu^+ \mu^-$	1449 ± 144	0.81 ± 0.03	$9.1\pm0.9\pm1.0$				
$Z \to \ell^+ \ell^-$	$Z \rightarrow \ell^+ \ell^ \sigma(Z+c) = 8.8 \pm 0.6 \text{ (stat)} \pm 1.0 \text{ (syst) pl}$						
Channel	$N_{ m Z+b}^{ m signal}$	C _{Z+b} (%)	$\sigma(Z+c)/\sigma(Z+b)$				
$Z \rightarrow e^+e^-$	2606 ± 114	2.90 ± 0.08	$1.9 \pm 0.2 \pm 0.2$				
$Z \rightarrow \mu^+ \mu^-$	3240 ± 147	3.93 ± 0.10	$2.2 \pm 0.3 \pm 0.2$				
$Z \to \ell^+ \ell^-$	$\sigma(Z+c)/\sigma(Z+b) = 2.0 \pm 0.2 \text{ (stat)} \pm 0.2 \text{ (syst)}$						
D [±] mode							
Channel	$N_{ m Z+c}^{ m signal}$	$\mathcal{C}_{\mathrm{Z+c}}$ (%)	$\sigma(Z+c)$ [pb]				
$Z \rightarrow e^+e^-$	276 ± 55	0.13 ± 0.02	$10.9 \pm 2.2 \pm 0.9$				
$Z \rightarrow \mu^+ \mu^-$	316 ± 75	0.18 ± 0.02	$8.8 \pm 2.0 \pm 0.8$				
$Z \to \ell^+ \ell^-$	$\sigma(Z+c) = 9.7 \pm 1.5 (\text{stat}) \pm 0.8 (\text{syst}) \text{pb}$						
D*±(2010) mode							
Channel	$N_{\rm Z+c}^{\rm signal}$	C_{Z+c} (%)	$\sigma(Z+c)$ [pb]				
$Z \rightarrow e^+e^-$	151 ± 31	0.11 ± 0.01	$7.3 \pm 1.5 \pm 0.5$				
$Z \rightarrow \mu^+ \mu^-$	247 ± 28	0.14 ± 0.01	$9.3\pm1.1\pm0.7$				
$Z \rightarrow \ell^+ \ell^-$	$Z \rightarrow \ell^+ \ell^ \sigma(Z+c) = 8.5 \pm 0.9 (\text{stat}) \pm 0.6 (\text{syst}) \text{pb}$						
Combination							
$Z \rightarrow \ell^+ \ell^ \sigma(Z+c) = 8.8 \pm 0.5 \text{ (stat)} \pm 0.6 \text{ (syst) pb}$							

- Agreement in general distributions (p_{τ}^{jet} , N_{sv})
- Discriminant distributions (SV-mass and JP) W+c MC and Z+c MC agree
- JP prob W+c MC and W+c data agree and validates the Z+c MC description
- SV-mass W+c MC and W+c data do not agree

The shape is not well modeled by the W+c MC. We take the shape of SVmass from W+c data since there is agreement in the kinematic properties between Z+c MC and W+c MC

More template modeling from data

For Z+c,Z+b,W+b,W+c templates from b-jets taken from tt production.

Using *a* sample where the two W bosons from the top(antitop) quark decay leptonically into leptons of different flavour.

Identification of heavy flavor: **muon inside the jet**

HF and charge identificacion Semileptonic c,b $\rightarrow \mu$ decay (**SL channel**):

- Tight μ that satisfies:
 - Is one of the PF constituents of a jet with $p_{\tau}(jet) \ge 25$ GeV, $|\eta(jet)| \le 2.5$
 - Non-isolated μ (isolation ≥ 0.2) with $p_{\tau}(\mu) \leq 25$ GeV, $|\eta(\mu)| \leq 2.1$.
- \bullet If several non-isolated μ candidates take the one with highest $p_{_{T}}$
- Charge identification of the charm quark through the charge of the μ -in-jet
- Charge definition: SS if the μ -in-jet has the same charge than the lepton from the W decay $OS \rightarrow Q_{W \rightarrow e, \mu} \neq Q_{\mu - in - jet} \qquad SS \rightarrow Q_{W \rightarrow e, \mu} = Q_{\mu - in - jet}$

HF identificacion Inclusive HF hadron decays (SV channel):

• Reconstructed secondary vertex (SSV or IVF) in jet

• In case of several jets with SV in the event, take the **highest** p_{T} jet

Systematic uncertainties

- **PU** : uncertainties in the evaluation of the pileup profile (assuming a different inelastic cross section)
- **PDFs** (**PDFNNPDF & PDFCT10**) : reweighted DY MC according to the new PDF's : NNPDF23_nnlo & PDFCT10
- Jet Energy scale and Resolution (JES & JER) :
 - Change scale and resolution correction factors by their uncertainties

- Branching ratios of $D \rightarrow X\mu$ hadrons and fragmentation $c \rightarrow D$ (BRFRAG): We reweight the simulation to match the PDG on D-hadron channels. The syst comes from uncertainty on those reweighting factors For semileptonic channel the systematic comes from the difference between the BR from inclusive or exclusive individual contributions
- Missing-et : Misestimations on the Missing transverse energy: modify the missing E_t by 10% of the unclustered missing E_t.
- Cgluon-splitting, misestimation of the contribution to our background from gluonsplitting from charm : increase a factor 50 % the weight on events with 2c with ΔR (jet,c) < 0.5
- **Bgluon-splitting,** increase 50% the weight on events with 2b w. $\Delta R(jet,b) < 0.5$
- c-(b-) tagging efficiency. Repit analysis with efficiency increased by its error
- Shape (semileptonic mode) : change Z+b template correction factor by its error
- Lepton efficiencies :change efficiencies by their errors
- Luminosity : 2.6 %

Previous measurements at hadron colliders:

1)D0@Tevatron: σ (ppbar - Z+c+X)/ σ (ppbar-Z+b+X) and σ (ppbar-Z+c+X)/ σ (ppbar-Z+jets+X), pT(jet) > 20 GeV

2) CDF@Tevatron: σ (ppbar-Z+D*+X)/ σ (ppbar-Z+X), pT(D*) > 3 GeV [σ (ppbar-W+D*+X)/ σ (ppbar-W+X) as well]

3)LHCb@LHC: Evidence and σ (pp-Z+D0+X) and σ (pp-Z+D+X) in the forward region